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Integrating Edge Detection
and Dynamic Modeling in
Quantitative Analyses of
Ecological Boundaries

WILLIAM F. FAGAN, MARIE-JOSEE FORTIN, AND CANDAN SOYKAN

Habitat boundaries profoundly influence the structure and function of landscapes, influencing ecological processes both locally and over larger
scales. In addition, boundaries themselves are dynamic entities whose changes can influence diverse populations, communities, and ecosystems by
way of feedback effects. These two issues, scale dependence and spatiotemporal dynamics, underlie much of the now considerable attention that
modelers and statisticians have devoted to the quantitative study of ecological edges and boundaries. We present the linkages between methods

of delineating boundaries, monitoring boundary changes, and modeling edge-related dynamics. In the process, we clarify statistical and mathe-
matical approaches to the study of ecological edges and boundaries, and we discuss important remaining issues in the area of quantitative edge
research. In particular, we address conceptual and methodological problems faced by statisticians and modelers, while highlighting topics that

would benefit from a collaborative approach.
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Discussed variously in terms of edges, ecotones,
borders, and boundaries, the generalized concept of
ecological boundaries has received considerable research
attention over the past decade (e.g., Chen et al. 1992, Hansen
et al. 1992, Gosz 1993, Risser 1995, Saunders et al. 1999). For
the purposes of this article, we define boundary as a zone
between contrasting habitat patches that delimits the spatial
heterogeneity of a landscape (Cadenasso et al. 2003). Bound-
aries are specific landscape features that can possess diverse
structural properties (e.g., open or closed, crisp and sharp or
gradual and fuzzy, straight or sinuous; see Strayer et al. 2003).
We use the term edge to refer to a sharp boundary, whereas
we use the term boundary to encompass both sharp bound-
aries (edges) and those with more gradual structure.
Increasingly, scientists’ attention has turned from describing
boundaries to investigating their functional importance
(Didham et al. 1996, Fagan et al. 1999, Laurance et al. 2001),
as when edges influence material flows across a landscape
(Wiens 1992), provide or limit wildlife habitat (Woodroffe and
Ginsberg 1998), or serve as a barrier to movement (e.g.,
Bider 1968).

Human activities strongly influence the extent and type of
boundaries found on Earth. These anthropogenic impacts are
increasingly being seen in a dynamic context, and this new
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perspective has led ecologists to at least two key insights.
First, boundaries have both local and long-distance influences,
affecting the structure of adjacent habitats and the processes
operating in these habitats and in habitats remote from the
boundaries themselves (Laurance et al. 1997, Woodroffe and
Ginsberg 1998, Saunders et al. 1999, Cadenasso and Pickett
2000). Second, boundaries are themselves dynamic entities,
with the potential to vary both spatially and temporally
(Wiens et al. 1985, Williams-Linera 1990, Forman 1995), as
when the structure of boundaries changes during succes-
sion (e.g., Matlack 1994). Given the complexities inherent in
this dynamic view of ecological boundaries, quantitative
frameworks can significantly enhance our understanding of
boundary structures, functions, and consequences.
Historically, studies of ecological boundaries have typically
adopted either pattern-based or process-based perspectives,
though the interrelationships between structure and function
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are increasingly recognized (Laurance et al. 2001). In some
ways, the distinction between pattern and process is reflected
in quantitative ecology. Those interested in edge structure (e.g.,
how boundaries give rise to landscape patterns) often rely on
edge-detection methods, whereas those interested in bound-
ary function (e.g., how cross-boundary flows mediate ecosys-
tem processes) typically adopt dynamic modeling approaches.

Conducting quantitative studies of the interaction be-
tween boundary structure and function presents the challenge
of integrating boundary detection and dynamic modeling.
Though rarely employed to date, such methodological inte-
gration will be essential to fully understanding complex issues
in landscape change, such as the long-term effects of con-
structing roads and power lines through undeveloped habi-
tats (e.g., Schneider et al. 2003). Given the importance and
difficulty of such problems, the purpose of this article is
twofold. One objective is to present the linkages between
methods of delineating boundaries, monitoring boundary
changes, and modeling edge-related dynamics and, in so
doing, to clarify mathematical and statistical approaches to
the study of ecological edges and boundaries. A second
objective is to show that the unification of boundary detec-
tion and modeling requires bridging the chasm that separates
the concepts of edge structure and edge function. In dis-
cussing this integration, we aim to identify opportunities for
novel research endeavors.

Boundary structure and function

in quantitative research

On structural grounds, Risser (1995) divides ecological
boundaries into two major categories: those caused by steep
gradients in physical environmental variables and those
caused by threshold or nonlinear responses to gradual envi-
ronmental gradients (figure 1; Strayer et al. 2003). Most dis-
cussions of boundaries address patterns and processes
associated with steep gradients. Although it is less intuitively
obvious, ecological boundaries may also be the product of
nonlinear ecosystem behavior, wherein gradual changes in en-
vironmental variables elicit dramatic changes in population
and community variables when thresholds are reached
(Vandermeer and Yodzis 1999). O’Neill and colleagues (1989)
describe boundaries that respond in a nonlinear fashion to
gradients as “metastable,” meaning that ecological properties
of the system remain stable only over a limited range of con-
ditions. Metastability has an important practical consequence:
Ecologists cannot assume that abrupt changes in popula-
tions or communities are the result of large changes in land-
scape variables.

The distinction between boundaries associated with steep
environmental gradients and those that are metastable is es-
pecially pertinent to the detection and monitoring of bound-
aries using spatial statistics, because statistical approaches to
boundary detection depend heavily on large magnitudes of
change in variables (i.e., strong differences in the variables’
quantitative value) as guides to the location of boundaries
(Jacquez et al. 2000). Consequently, metastable boundaries—
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in which changes in response and causative variables are
coupled in a nonlinear, often nonobvious, fashion—pose
important challenges to statistical research on boundaries (fig-
ure 1). The investigation of metastable boundaries constitutes
one research area in which integration of dynamic modeling
with statistical detection would be especially fruitful. An-
other area that would benefit from an integration of statis-
tical boundary detection with mathematical modeling of
ecological boundaries involves situations wherein factors
that created a boundary may not necessarily be the ones that
maintain it (see Strayer et al. 2003 for examples).

In contrast to the primarily structural approaches dis-
cussed above, Forman (1995) suggested a five-part func-
tional categorization of boundaries: habitat, filter, conduit,
source, and sink. For example, the permeability of boundaries
to biotic and abiotic vectors can reflect their function as
filters (Wiens 1992), whereas by facilitating movement
parallel to (rather than across) a boundary, the boundary may
serve as a conduit (Bider 1968). Such functional roles are typ-
ically studied using dynamic modeling, as described
below. Though most dynamic modeling approaches help us
understand how boundaries influence population dynamics,
community structure, nutrient cycling, productivity, and
other ecological attributes in the adjacent patches (Wiens et
al. 1985, Naiman et al. 1988, Wiens 1992), they are incomplete
because they do not consider dynamic features of the bound-
aries themselves (e.g., feedbacks that alter the location or
characteristics of the boundaries). In particular, monitoring
boundaries over time using statistical methods to gauge their
resistance and resilience in the face of altered climate regimes
or other environmental changes (Hansen et al. 1992) is
typically decoupled from dynamic modeling efforts. Such
problems constitute a core area that could benefit from
increased integration of statistical and dynamic perspectives.

The importance of scale in detecting boundaries
Boundaries can be detected at any spatial or temporal scale,
because different patterns emerge at different scales of in-
vestigation (e.g., Gosz 1993). Our ability to recognize what is
or is not a boundary will therefore change with scale (Wiens
1992, Fortin et al. 2000, Csillag et al. 2001, Cadenasso et al.
2003). Consequently, ecologists must select scales of mea-
surement appropriate to the particular goals of their studies
(e.g., Gosz 1993, Fortin et al. 2000). It is also important to
realize that boundary structure and function are context-
dependent; one cannot fully characterize a boundary with-
out characterizing adjacent patches.

Two interrelated aspects of scale that affect the accuracy of
the delineated boundaries and their features need to be con-
sidered when designing a sampling regime for detecting
boundaries. These are the spatial extent of the study area
and the grain (i.e., resolution) of the sampling unit (Fortin
etal. 2000, Strayer et al. 2003). For example, the extent of the
study area should be large enough to ensure sufficient data
collection in adjacent patches as well as within the boundary
itself (especially when a boundary is wide, gradual, and
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Figure 1. Spatial pattern of environmental variables
creating ecological boundaries: (a) steep gradient in the
environmental variable; (b) gradual environmental gra-
dient causing either a threshold or a nonlinear response.

sinuous, as are boundaries generated by fire or insects).
Furthermore, if the extent of the study area is too small,
insufficient pattern exists in the data to permit identification
of the boundary’s location. In contrast, if the extent is too large
(as is often the case with satellite imagery), a different prob-
lem emerges, in that multiple ecological processes can each
contribute to the generation of edges. This results in “noisy”
signals that reduce the ability of statistical boundary detec-
tors to delineate patches’ boundaries accurately (Csillag et al.
2001).

and boundaries can be detected using either image segmen-
tation or other statistical techniques (Lillesand and Kiefer 1994,
Fortin et al. 2000).

The resolution or grain of the sampling unit determines the
smallest spatial resolution at which boundary locations can
be delimited. At the landscape scale, boundaries can be de-
tected using a remotely sensed image in which the sampling
unit size is externally imposed by the pixel resolution of the
sensor and satellite (Fortin et al. 2000). It is unlikely, however,
that the pixel resolution will perfectly match the ecological
process of interest; this mismatch will affect boundary de-
tection. Ideally, the sampling unit size should be large enough
to contain more than one individual of interest (e.g., a tree)
but small enough to allow edge determination. Clearly, there
is a component of art in the science of edge detection. In the
following section, we outline different boundary detection
techniques and identify the situations in which they are most
useful.

Disentangling a web of

statistical techniques

A boundary can be defined as a spatial location where the dif-
ference (i.e., the magnitude of change) between quantitative
values of a variable at adjacent locations is greatest (Fortin et
al. 2000). Given the various possible structural attributes of
aboundary (sharp, gradual, open, closed, sinuous, straight),
the most important quality a boundary detector should have
is the flexibility to characterize diverse structural boundary
features. A diverse array of statistical boundary detectors has
been developed, in part to accommodate a variety of data types
and sampling regimes (figure 2) and in part because statis-
ticians have approached the problem of boundary identifi-
cation from two different directions. The first family of
methods groups sampling units into spatial clusters (i.e.,
patches) based on similarities in variables. This process
creates sharp boundaries between the spatial clusters (Fortin
and Drapeau 1995, Jacquez et al. 2000). Spatial clustering offers

Indeed, in edge detection, designing an ef-
fective sampling strategy is a difficult problem.
A key difficulty is that the most straight-
forward approaches (such as a systematic
sampling design with a standardized spatial lag
between sampling units) are not recom-
mended for boundary detection, because mis-
matches between lag size and system
characteristics can result in misidentified
boundary locations and misestimated bound-

Quantitative data

YES NO

Contiguous grid data

Spatial clustering
Categorical wombling

YES

NO

ary characteristics (e.g., width and shape).
Instead, sampling designs that have contig-
uous sampling units, such as transect (one-
dimensional) or lattice (two-dimensional)
methods, are more appropriate for charac-
terizing boundaries. Lattice data are espe-
cially advantageous because they cover a large
area with spatially adjacent sampling units,
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Figure 2. Flow diagram classifying statistical boundary detectors according to

data type.



a number of advantages: It can be used with data that are
quantitative or qualitative, univariate or multivariate. Further,
it completely divides the study area into patches (figure 3a).
The major disadvantage of this method is that it delimits only
sharp boundaries, which may not reflect the reality of the study
area. Because natural boundaries are not always sharp, fuzzy
set modeling is increasingly used to identify boundaries when
the patch membership of sample points is considered a prob-
ability (instead of an all-or-nothing trait) (Leung 1987,
Burrough and Frank 1996, Jacquez et al. 2000). The major dif-
ficulty with this approach, however, is that the underlying fuzzy
membership function is user-defined, and slight changes in
this function can drastically affect characteristics of the
detected boundaries (Burrough and Frank 1996).

The second family of boundary detectors uses a partition
approach. This separates adjacent sampling units based on
their degree of difference, with boundaries corresponding to
locations that feature high rates of change (Fortin et al. 2000,
Jacquez et al. 2000). In this approach, resulting boundaries can
be sharp or gradual. These rates of change are computed
locally using a “kernel” (i.e., a window of n x n cells such as
2 x2 or 3 x 3); the rate of change computed is assigned to the
center of the kernel. Rates of change can be computed by these
kernel detectors either as absolute differences or as gradients
using first (e.g., lattice wombling; figure 3b) or second par-
tial (e.g., Laplacian; figure 3c) derivatives among adjacent sam-
pling units (Lillesand and Kiefer 1994). However, kernel
detectors are sensitive to local noise between adjacent sam-
pling units, leading to the delineation of artificial boundaries
within patches (Csillag et al. 2001). Such local noise can be
minimized by using special statistical filters or by increasing
the size of the kernel (e.g., 5 x 5, 7 x 7; Lillesand and Kiefer
1994). When noise is present at both local and regional scales,
the most efficient boundary detection approaches also have
hierarchical characteristics. Hierarchical methods (which
have names like “quadtrees” and “wavelets”) are less sensitive
to noise because they can compute boundaries at several
scales by varying the size of the kernel. Also, using a hierar-
chical approach, the locations of delineated boundaries can
be optimized to achieve a user-defined number of patches
(Csillag and Kabos 2002). Wavelet techniques are increasingly
available in software packages (e.g., geographic information
systems, or GIS) and should see greater usage because of
their robustness to noise and their flexibility in employing
diverse kernel functions for boundary detection. However, to
take advantage of such flexibility, users must be knowledge-
able about the underlying methodological details.

When available data are quantitative but are sampled
using an irregularly spaced design (e.g., random, stratified, sys-
tematic triangular), traditional partition-type boundary
detectors, using square kernels, cannot be used. Instead, re-
searchers can use triangulation wombling, based on a trian-
gular kernel. Trios of sampling units can be obtained by
creating a so-called Delaunay network that links adjacent
sampling units into triangles (figure 3d; Fortin and Drapeau
1995). Finally, with categorical data, boundaries can be de-
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tected using categorical wombling as a “mismatch” where
two adjacent sampling units belong to dissimilar categories
(figure 3e; Fortin and Drapeau 1995, Jacquez et al. 2000). Cate-
gorical wombling performs better when several categorical
variables are available for analysis; boundaries correspond to
locations where multiple variables exhibit mismatches between
adjacent samples. This ability to integrate across multiple
variables is a key advantage of categorical wombling (and other
wombling approaches) over kernel detectors and wavelet ap-
proaches, which find boundaries using only a single variable
(Jacquez et al. 2000).

Despite the inherent flexibility of these approaches to edge
detection and their powerful opportunities to match statis-
tical techniques with data types (e.g., categorical wombling
for categorical data), they have two major drawbacks. First,
because boundaries are based on rates of change, users need
to define the threshold at which the rates of change consti-
tute a boundary. Such thresholds are often set arbitrarily,
although users can reduce the arbitrariness of their deci-
sions by choosing thresholds that break the study area into
a specific number of patches (Fortin and Drapeau 1995).
Second, statistically identified boundaries are not necessar-
ily significant ones; an identified boundary may not be sig-
nificantly more pronounced than the interpatch differences
that could be expected to occur by chance. Procedures to test
the significance of these boundaries are still inadequately
developed.

The statistical significance of boundaries. It is important to
discriminate between boundaries that are real features of a
landscape (i.e., are spatially cohesive and connected; figure 4a)
and those arising from random chance (i.e., disconnected lo-
cations that have high rates of change but are scattered across
the study area; figure 4b). Randomization procedures are
one possible way to test whether observed boundaries are
cohesive and significantly different from those generated by
completely randomizing the data. However, randomization
tests for boundary significance must be conducted carefully,
because data sampled within patches and across edges are not
spatially independent, a consequence of within-patch spatial
structure and autocorrelation generated by ecological processes
(e.g., seed dispersal, soil moisture). Although complete ran-
domization procedures generate small, isolated boundaries,
their magnitudes are often larger (figure 4b) than those
observed in the original data (figure 4a). Hence, to test the
significance of boundaries, a better option is to use restricted
randomization procedures that place spatial constraints on
the degree to which sample points are reshuffled (Fortin et
al. 1996). For example, the randomization can be restricted
within patches (figure 4¢) or otherwise matched to the degree
of spatial structure in the data (Jacquez et al. 2000).

Monitoring the position and influences of boundaries. After
statistically significant boundaries are identified, functional
relationships between boundaries can be analyzed using
overlap statistics that, roughly speaking, provide a measure

August 2003 / Vol. 53 No. 8 + BioScience 733



Articles @

(a) Spatial clustering
4]6(6|4]4]6]18]14]18]20
5 4|214|4]6(4]2]14|16]16
_E E——8 4|6|4|2]18] 8]18]14/16|20
C /\ 6|6]6]6]8[18]8]14]2020
—A c 4|6|4a|2]6]8]20[14[16]16
] ——D F— \ 4]a]4]8][8]14[14[14[20[14
£ + \//D 4]28|16]8 J16/14]20[20] 16
-—[‘_“F A 6 | 6|16 8 |16|20]14[14] 16|14
6|6|4]|4l16] 4]16]14]20]14
Dendrogram Spatial contiguity 4| a|8l8]|2[1al18]16]14|20
(clustering) (Delaunay links)
(b) Lattice wombling (c) Laplacian kernel
4l6|6]4 18|20 179 |18 |17 a]6[6]4]4]6]18]14[18]20
42|44 16|16 Y A 4]2|4l4]6]4]2]14|16]16
4|6]42 1620 4|6|4|2|18] 8]18]14]| 1612
66|66 20[20 <119 |-1/9 [-1/9 6|6|6]|6]8][18] 8142029
4l6]4]2 16[16 4]|6|4]|2]|6|8]20]14]16]16
4|4l4l8 20[14 4)|4|4]8]8|14[14][14§20] 14
4|2 #116| 8 116]14|20(20 16 4|2 8]16] 8 |16{14]20] 20 16
6|6 l16l8 14|14]16[14 6 | 6 |16] 8 [16]20)14]14] 16| 14
6[67]4]4]16] 4116/14|20[14 6|6[4]4]16] 4 |16[14]20] 14
4|alsls 18[16]14[20 4|4|8]8]2[14]18]16]14]20
(d) Triangulation wombling (e) Categorical wombling
[@]_[3] [@]af5] [
2 4% 14] [16]
[4] T4 disp-his] |16
6| |em18] [14] [20]
[4] [4] [el J20] [16
4| 8] [14] [14] w14
[4] [8] [sw [14] [20h
6| [8] M2o[ [14] 14|
[6] T4 |2l [16] |20
(] Tl T4l Trel [29]

Figure 3. Examples of how statistical boundary detectors work. The square grids with numbers inside each cell represent a
landscape of sampled data (e.g., from a ground survey or satellite image). The bold lines indicate the boundaries defined on
the landscape according to each statistical technique. (a) Standard spatial clustering techniques require a dendrogram defin-
ing the quantitative similarity of sampled points and a map that characterizes their spatial contiguity (here defined using
Delaunay links). Four patches were needed to separate the study area into two habitat types, because two isolated samples
were extremely different from their surroundings. (b) Lattice wombling computes the rate of change among four adjacent cells
forming a square and assigns the rate to the midpoint rather than to a cell. Defining boundary units as the highest 20% of the
81 calculated rates of change on the grid, 17 midpoints are identified (the filled black squares). Connecting these to each other
by nearest neighbor methods yields two discrete boundaries. (c) A Laplacian kernel determines the difference of the central
cell and each of its eight neighbors using a 3 x 3 cell kernel. These differences are multiplied by the value of the respective
neighboring cells, summed, and then assigned to the central cell. Applying the same 20% threshold (20 rates of change out of
100) yields eight boundaries (nine total patches). (d) Triangulation wombling computes rates of change among three adjacent
cells forming a triangle. Applying the same 20% threshold (17 rates of change out of a possible 80) yields four boundaries.

(e) Categorical wombling computes mismatches between pairs of cells for some categorical trait. All the mismatches are
shown and, when linked, give four boundaries.
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Figure 4. Significance tests for boundary based on
randomization. (a) Observed values of a quantitative
variable at sampling locations along a transect across

two patches (patch A, circles; patch B, squares) and the
boundary between them (triangles). Differences (rates

of change) are indicated by the lines between the values at
the sampling locations. (b) The rates of change generated
by complete randomization are higher than those for the
observed data. This is because the complete randomiza-
tion procedure thoroughly disrupts the spatial configura-
tion of the samples, shuffling and intermingling the
observed values so that a high value from patch A can be
next to a low value from patch B. Thus, the complete ran-
domization procedure does not accurately represent the
spatial structure of the data and the underlying ecological
processes. (c) Restricted randomization, in which sampled
values are reshuffled within, but not among, each patch
and the boundary, preserves the spatial structure of the
data and the underlying ecological processes.
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of how boundaries are positioned relative to one another
(Fortin et al. 1996, Jacquez et al. 2000). Though still several
steps away from the cause-and-effect insights that dynamic
modeling can provide, overlap statistics allow researchers to
test such interesting questions as “Is the location of a forest
boundary associated with the location of a hydrologic bound-
ary?” and “Is the position of a boundary moving through
time?” Two types of overlap statistics exist: (1) the direct
overlap statistic, which counts the number of times the edges
are at the same location; and (2) the minimum nearest
distance statistic, which computes the average minimum dis-
tance between two boundaries. Restricted randomization
tests should also be used to test the significance of these over-
lap statistics (Fortin et al. 1996).

In other cases, the goal is not to identify links between the
spatial positions of different types of boundaries but rather
to test for the effect of the location of a boundary on some
other ecological variables, such as seedling density or degree
of nest predation. In such cases, one may wish to establish how
extensive such edge effects are by using measures like the
depth or area of edge influence (Chen et al. 1992, 1996, Saun-
ders et al. 1999, Harper and Macdonald 2001). These meth-
ods first compute a reference distribution of the ecological
variable in a control area (e.g., nest predation rate in a forest)
and then quantify how the variable deviates from the refer-
ence distribution at increasing distances from the boundaries.
Spline analyses, such as that conducted by Cadenasso and
colleagues (1997), can also be used to determine the spatial
co-occurrence of gradients of abiotic variables across bound-
aries. Regardless of the statistical approaches used, it is in con-
sidering the spatial co-occurrence of boundaries, and the
functional relationships among these boundaries, that con-
ceptual edge detection issues come closest to those involved
in dynamic modeling of edges.

Dynamic modeling of boundary-mediated processes
Modeling approaches that treat boundary-related dynamics
fall into three broad categories, presented here in order of
increasing complexity and realism: (1) implicitly spatial
models with spatial heterogeneity, (2) process-based engi-
neering models focusing on the details of boundary flow, and
(3) explicitly spatial models incorporating geometric detail.
Of course, other spatial modeling approaches, such as
metapopulation theory, also deal with issues and processes in
which boundaries play vital roles. However, we focus our
overview here on modeling methods for which the conse-
quences of boundaries are of primary concern.

The first category of models includes those in which space
is treated implicitly and the impacts of boundaries on eco-
logical processes of interest are modeled indirectly. For
example, simple patch models may assume that emigration
across a boundary occurs and that some of the migrants are
lost. Likewise, spatial subsidy models assume continuous or
pulsed inputs of nutrients, materials, or species from outside
a domain of interest (e.g., Huxel and McCann 1998). The
impact of the boundary, which mediates and may ultimately
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control such flows, manifests itself only indirectly. Such
implicitly spatial models sacrifice detailed descriptions of
cross-boundary dynamics in favor of more general study of
heterogeneous patches coupled by dispersal. This approach
is advantageous when changes in boundary characteristics are
only of secondary interest.

In contrast, the second and third classes of models
involve approaches that deal explicitly with boundary con-
ditions and therefore require more detailed mathematical
representations of how a boundary disrupts, modifies, or
otherwise influences ecological processes of interest (e.g.,
dispersal, nutrient flow). For example, the second class of
models includes applications of models from fluid dynamics
that attempt to capture the details of cross-boundary and near-
boundary flows. Typically, these models adopt a small-scale
perspective, such as the boundary dynamics of individual
coral heads (Thomas and Atkinson 1997). However, because
this modeling approach places a special emphasis on the
study of mixing processes, it could, if applied at larger scales,
provide insights into the influences of wind damage on
boundary structure (e.g., Laurance et al. 1997) and turbulent
flow on the dispersal of nutrients, seeds, insects, and other air-
borne materials (e.g., Weathers et al. 2001). Thus, at larger
scales, engineering models or other approaches that explic-
itly deal with physical processes may afford unique insights
into the contributions of boundaries to the maintenance of
landscape heterogeneity.

The third class of theoretical approaches involves spatial
models that emphasize aspects of habitat geometry and con-
nectivity. Mathematically speaking, a diverse array of mod-
els would fall within this class of approaches, including both
spatially explicit population models (SEPMs; Dunning et al.
1995) and partial differential equation models (PDEs; Holmes
etal. 1994). These two modeling frameworks are at opposite
extremes in terms of the way they attempt to capture the de-
tails of habitat geometry. For example, SEPMs can involve
computer simulations of animals moving around in alternative
landscapes where multiple habitat patches and boundaries are
specifically delineated and may determine dispersal rules. In
practice, such detailed models are usually invoked when re-
searchers want to answer very specific questions about the in-
fluences of landscape structure on population dynamics,
such as how specific arrangements of patches, edges, and the
surrounding habitat affect persistence at the landscape level.
Such detail is not uniformly advantageous, as in cases explored
by Wennergren and colleagues (1995) in which uncertainty
in dispersal parameters for SEPMs resulted in highly variable
and weakly predictable population dynamics.

In contrast, PDE formulations of boundary-related
questions typically specify little more than the existence of one
or more patches with certain geometric properties, a bound-
ary that influences dispersal in particular ways, and perhaps
some habitat heterogeneity manifesting as a quality gradient
(e.g., Fagan et al. 1999). Despite their simplicity, PDE
models can incorporate attributes of both patch structure
and boundary dynamics; as a result, they lend themselves
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to investigations of a variety of spatial issues. They are
particularly useful for asking generic, conceptual questions
about the influence of spatial or geometric factors on popu-
lation dynamics or species interactions, rather than for try-
ing to understand the detailed dynamics of a specific
system or landscape.

For example, PDE models can be formulated to ask ques-
tions about critical patch size. In such cases, the goal of the
modeling is to identify threshold conditions under which a
species’ intrinsic population dynamics, or impacts from an-
other species (e.g., predation; Cantrell et al. 2001a), will cause
the extinction of the focal species or prevent its colonization.
Similar approaches could be used to investigate the patch
dependence of ecosystem processes (e.g., the fixation and
loss of nitrogen). A variant on the critical patch size theme in-
volves some kinds of spatial control problems. Frequently the
term spatial control is used in connection with large-scale ma-
nipulations of landscape heterogeneity to achieve some de-
sirable result, such as the prevention of insect outbreaks (e.g.,
rice pest reduction; Settle et al. 1996) or the persistence of
species or habitat types (e.g., forest landscape management;
Cissel et al. 1999). However, similar concepts can sometimes
be studied using simpler patch-boundary problems. For ex-
ample, Ludwig and colleagues (1978) modeled a case in
which patch size could be manipulated to prevent the spatial
spread of insect outbreaks.

A second area of PDE modeling includes boundary hos-
tility problems. In boundary hostility problems, patch
attributes are held constant, but the nature of the boundary
(or characteristics of the boundary resulting from the dif-
ference between a patch and the surrounding matrix habitat)
is allowed to vary. This kind of modeling has been used to ask
a variety of questions associated with nature reserves and other
aspects of conservation biology (Fagan et al. 1999). For ex-
ample, Cantrell and colleagues (2001b) showed how the
severity of pathogen transmission across a patch boundary
could determine the persistence or extinction of local host
populations.

Perhaps the most pronounced shortcoming of the various
theoretical approaches to modeling dynamics involving eco-
logical boundaries is that, except for the spatially implicit
models, none of them can easily handle temporal changes in
boundary conditions or feedback between the processes op-
erating across the boundary and the changes to the bound-
ary itself. In contrast, recent empirical research, especially
studies of forest fragmentation, has made clear that bound-
ary conditions change over time, and that this temporal de-
pendence can manifest itself in several distinct ways (see,
e.g., Hardt and Forman 1989, Cummings and Vessey 1994,
Laurance et al. 1997). Because detecting changes in the loca-
tion or characteristics of boundaries constitutes a major line
of investigation for statisticians conducting research on
boundaries, the lack of a substantial counterpart to these
changes on the modeling side seriously inhibits increased
integration of statistical and dynamic modeling perspectives.



Sometimes the time frame of boundary change is suffi-
ciently long relative to the ecological processes of interest
(e.g., predator—prey interactions) that the boundary can be
viewed as static. At other times, however, explicit recognition
of temporal changes in boundary conditions is required. For
example, some forest clear-cut edges can close up relatively
quickly following harvest, limiting boundary permeability to
anarrow window of time for some species (Williams-Linera
1990). However, because the rate of sealing of patch bound-
aries depends on such variables as aspect, vegetation type, and
the degree of disturbance associated with edge creation, in
some cases cross-boundary propagule dispersal may remain
high for years. In other cases, successional processes may di-
minish the hostility of boundary conditions over time as the
structure of cleared areas converges on that of forest patches
(Matlack 1994). In still other cases, significant lag effects
exist such that edges become increasingly hostile the longer
the time elapsed since clearing (Laurance et al. 1997).

A second kind of temporal dependency involves cases in
which the location of the boundary changes over time. Ex-
amples include the expansion of forest boundaries through
dispersal of seeds from interior trees (Hardt and Forman
1989, Laurance et al. 1997) and patch contraction caused by
tree mortality at the boundary. Despite their structural dif-
ferences from forest patches, similar outward and inward
movements of boundaries occur in intertidal zones (Paine and
Levin 1981) and sea-grass beds (Jensen and Bell 2001).

The examples above all involve edge changes that are, at least
approximately, unidirectional in nature. A third, and very
different, kind of temporal dependency arises when bound-
ary structure or its influence on dispersal varies periodically
according to daily (Paine and Levin 1981) through seasonal
(Cummings and Vessey 1994) cycles. A key effect of such
temporal forcing is to concentrate species interactions or
other processes into narrow windows of time, thus inducing
temporal heterogeneity in processes already operating on a
spatially heterogeneous landscape.

One reason ecological PDE models have generally ne-
glected temporal dependencies in boundary conditions is
that even preliminary analytical models would require funda-
mental advances in the underlying basic mathematics
before applied scenarios could be fully represented and
explored. For example, although existing PDE theory can
handle cases in which species’ population densities vary
periodically inside a patch, questions involving unidirec-
tional and periodic changes in boundary structure would
require new theorems relating to population persistence un-
der time-varying boundary conditions. In contrast, the cases
involving mobile boundaries would require extension of
results from so-called free boundary problems, which, out-
side of ecology, have been used to study physical processes such
as melting ice and the landward intrusion of seawater wedges
in deltaic regions. Although exploration of these conceptual
issues in ecological contexts using PDE models must await
mathematical developments, related issues could be studied
now using SEPMs and other simulation methods. The con-
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duit and filter functions of edges (Forman 1995, Strayer et al.
2003) exemplify areas in which SEPM-based theory could
provide insights.

Conclusion

As a direct consequence of greater landscape fragmentation
worldwide, the growth of habitat edges has far outpaced ad-
vances in our understanding of processes associated with
them. Recent studies have documented the impressive array
of processes that are mediated by habitat edges, including dis-
ease transmission, speciation, and community decay induced
by global warming. This complex assortment of processes, and
the profound diversity of ecological boundaries themselves,
requires that ecologists develop rigorous methods for de-
tecting the location and movement of boundaries and ana-
lyzing their consequences. The statistical detection and
delineation of boundaries and the dynamic modeling of
habitat edges represent two promising avenues for
advancing our understanding of boundary structure and
function across a variety of spatiotemporal scales. However,
further progress will require improved linkages between ob-
servable, boundary-related patterns and the complex processes
operating across habitat boundaries. Near-term opportuni-
ties exist for uniting statistical monitoring with dynamic
modeling to study the nature and consequences of boundary
characteristics and positions.
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