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Abstract. Spatially explicit models for populations are often difficult to tackle
mathematically and, in addition, require detailed data on individual movement behavior that
are not easily obtained. An approximation known as the ‘‘average dispersal success’’ provides
a tool for converting complex models, which may include stage structure and a mechanistic
description of dispersal, into a simple matrix model. This simpler matrix model has two key
advantages. First, it is easier to parameterize from the types of empirical data typically
available to conservation biologists, such as survivorship, fecundity, and the fraction of
juveniles produced in a study area that also recruit within the study area. Second, it is more
amenable to theoretical investigation. Here, we use the average dispersal success
approximation to develop estimates of the critical reserve size for systems comprising single
patches or simple metapopulations. The quantitative approach can be used for both plants
and animals; however, to provide a concrete example of the technique’s utility, we focus on a
special case pertinent to animals. Specifically, for territorial animals, we can characterize such
an estimate of minimum viable habitat area in terms of the number of home ranges that the
reserve contains. Consequently, the average dispersal success framework provides a
framework through which home range size, natal dispersal distances, and metapopulation
dynamics can be linked to reserve design. We briefly illustrate the approach using empirical
data for the swift fox (Vulpes velox).

Key words: average dispersal success; critical patch size; home range; long-distance dispersal;
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INTRODUCTION

Lack of dispersal data is often a major weakness in

conservation programs that use reserves or networks of

reserves to protect native species (Doak and Mills 1994,

Haig et al. 1998, Halpern and Warner 2003). Long-

distance dispersal is a particular problem, and this gap is

especially troubling because ecological theory makes it

clear that long-distance dispersal is critical to a diversity

of ecological processes, including spatial spread (e.g.,

Neubert et al. 1995, Clark et al. 1999) and metapopu-

lation dynamics (Hanski 1999). In contrast, when

dispersal data are available from field studies, they often

tend to be ‘‘local’’ in nature. That is, scientists typically

know more about the movements and fates of individ-

uals that restrict their activities to areas near active study

sites than they do about individuals that travel far from

those study sites. This is especially true for research on

vertebrate species in which dispersal studies may provide

solid movement data relevant to determining home

range size (Person and Hirth 1991, Poole 1994, Maehr et

al. 2002) or natal dispersal (Gese and Mech 1991, Byrom

and Krebs 1999, Sutherland et al. 2000), but the

movements and fates of individuals dispersing far from

study areas remain largely unknown (Koenig et al.

2000). This issue also manifests itself in vertebrate

studies as the ‘‘study area size problem’’: estimates of

dispersal parameters change depending upon the size of

the study area in which the monitoring was conducted

(e.g., Baker et al. 1995, Lahaye et al. 2001). Overall, a

striking mismatch exists between the kinds of data that

are often required to work with dispersal models and the

kinds of data that are typically available from field

studies of dispersal.

Recent advances in mathematical ecology offer a novel

route out of this dilemma and provide one avenue by

which the most readily available types of empirical data

on animal movements can be directly incorporated into

conservation planning. Lutscher and Lewis (2004)

developed the theory necessary for linking local dispersal

data to conservation planning in the context of what Van

Kirk and Lewis (1997) had termed a population’s

‘‘average dispersal success.’’ This quantity, which we

define formally later in the paper, may be something of a

misnomer to some applied ecologists. Rather than

distinguishing ‘‘successful’’ dispersers as those that

survive emigration to a different population and ‘‘un-

successful’’ dispersers as those that die en route, the

theory underlying average dispersal success actually

distinguishes between individuals that disperse locally

vs. those that disperse far away. Thus the theory
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distinguishes dispersal events that are, on some scale,

philopatric as successful and those that are non-phil-

opatric as unsuccessful (i.e., success is viewed from the

perspective of the source population). Spatial scale is also

an important consideration in these analyses, because

‘‘local’’ dispersal can be within a particular habitat patch,

within a system of patches, or even within a user-defined

region of study within some larger landscape.

The application of average dispersal success builds on

the concept of ‘‘critical habitat size’’ (Latore et al. 1998;

see also Hanski and Ovaskainen 2000), which extends

the idea of a population’s ‘‘critical patch size’’ (Skellam

1951, Kindvall and Ahlen 1992, Cantrell et al. 2001,

Beier et al. 2002, Lockwood et al. 2002, Pereira et al.

2004) by incorporating conditions on the size and

productivity of networks of patches and the distance

between them. Specifically, for a population in which

many individuals disperse, the fraction of individuals

that establish locally is an inherently useful quantity for

understanding population dynamics and guiding man-

agement decisions related to the amount of habitat

necessary for population persistence.

In this paper we characterize the linkages between

average dispersal success, home range size, and natal

dispersal to outline a technique that connects the

behavioral ecology of territorial vertebrates with their

habitat needs in reserve networks. For clarity, we have

broken the paper into seven sections, as follows. We

begin by reviewing some recent results from the

theoretical literature that allow spatially explicit dis-

persal to be incorporated within the well-known math-

ematical framework of matrix demography (Caswell

2001). We next formally define average dispersal success

in the context of kernel-based models of dispersal

(Neubert et al. 1995). In the third and fourth sections,

we discuss average dispersal success as a conservative

approximation to results from far more complicated

spatially explicit models of dispersal, and we provide a

novel demonstration of how home range size and reserve

design issues can be linked via average dispersal success.

Next we transition from the theoretical foundations of

the approach to a concrete example wherein we illustrate

the linkages among home range size, reserve design, and

average dispersal success in a case study for a relatively

little-known vertebrate predator, the swift fox (Vulpes

velox). Sixth, we present new theoretical results that

extend the average dispersal success concept to the case

of metapopulations. We conclude with a discussion of

the advantages and disadvantages of average dispersal

success from both practical and theoretical perspectives

and suggest routes for additional research.

MATRIX MODELS AND DISPERSAL

Matrix models have proven to be valuable tools for

describing stage-structured populations in discrete time

and are increasingly gaining acceptance among empiri-

cists (Caswell 2001). Recently, these models have been

extended to include effects of spatial movement of

individuals (Neubert and Caswell 2000, Lutscher and

Lewis 2004). In the following, we describe two possible

approaches, one spatially implicit, the other spatially

explicit. For convenience, we limit ourselves to linear

matrix models, but it is straightforward to extend the

concepts developed to models with density dependence.

In matrix models, a population is divided into s � 1

stages, where the column vector n¼ (n1, . . . , n3)
T denotes

population densities in the respective stages. (The

symbol T denotes the transpose of the vector.) These

population densities change in time according to

nðt þ 1Þ ¼ BnðtÞ: ð1Þ

Here the entries of the demographic projection matrix B

¼ (bij) are the rates at which stage i is produced from

stage j. Population growth occurs if the dominant

eigenvalue of B (traditionally called the population

multiplier and symbolized as k) exceeds 1. If k , 1, then

the population will decline.

To incorporate the effects of spatial movement into a

matrix model, we assume that population growth and

dispersal occur during separate phases. We assume that

the population lives in a (not necessarily connected)

habitat unitX, which, as previouslymentioned, could be a

particular patch, systemof patches, or user-defined region

of study.When studying the critical habitat size necessary

to support a population, one typically assumes that X is

homogeneous and connected, and further assumes, as a

‘‘worst case scenario,’’ that there is emigration but no

immigration. Later, wewill turn to networks of patches of

possibly different quality with movement among patches.

As a simple heuristic, spatially implicit approach, we

multiply each rate bij by the probability that an

individual of stage i that was produced from stage j will

remain inside habitat X during dispersal. Denoting these

probabilities by pij and forming the matrix P¼ (pij), we

obtain the following modified matrix model:

nðt þ 1Þ ¼ ½P 8 B�nðtÞ ð2Þ

where the symbol 8 stands for the so-called Hadamard

product of entrywise matrix multiplication. Again we

turn to the dominant eigenvalue of the matrix to

understand the population’s fate. If the dominant

eigenvalue of the matrix P 8 B exceeds 1, then the

population can persist, i.e., X is larger than the critical

size for the given population vital rates bij. In contrast, if

the dominant eigenvalue is less than 1, then the

population goes extinct, i.e., X is smaller than the

critical size required for these parameters.

Three questions arise immediately from this simple

approach. (1) How do the probabilities pij depend on the

dispersal behavior and on the geometry of the habitat

patch? (2) Can the nonspatial model be related to or

derived from a spatially explicit model with an under-

lying mechanistic model of dispersal? (3) How do the

predictions of the simple, spatially implicit model

compare to those of related explicit movement models?
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In the following paragraphs, we will answer these

three questions. We start by deriving an appropriate
spatially explicit movement model for (1). For sim-

plicity, we consider the case of a single stage first, i.e.,

s ¼ 1. To describe the outcome of dispersal events, we
use a dispersal kernel (e.g., Neubert et al. 1995), written

k(x, y), that denotes the probability that an individual
moves from position y to x during one dispersal phase.

Frequently it is assumed that dispersal is a function of
distance only, i.e., k(x, y)¼ k̂(jx� yj), and the example

presented later will be of this form. However, it should

be noted that the model formulation allows for explicit
dependence on the initial and final point, i.e., it can

accommodate for edge effects and heterogeneous land-
scapes (e.g., Van Kirk and Lewis 1997, Morales 2002,

Robbins 2004). The number of individuals at time tþ 1

at location x is obtained by multiplying the number of
individuals produced at location y by k(x, y) and

integrating over all possible y:

nðt þ 1; xÞ ¼
Z

X
kðx; yÞbnðt; yÞ dy: ð3Þ

To incorporate stage structure of the population and

stage dependence of dispersal, we index the dispersal
kernels by both the ‘‘from’’ and ‘‘to’’ stages of the

population, writing kij(x, y) for the dispersal kernel of an
individual of stage i produced from an individual of

stage j. This general model can handle situations in

which, for example, first- and second-year breeders may
have different fecundities and/or dispersal proclivities,

even though for many species of conservation interest,
reproduction and dispersal occur in different life history

stages. After summarizing all of these kernels into one

matrix K ¼ (kij), the spatially explicit matrix model is
given by the following equation:

nðt þ 1; xÞ ¼
Z

X
½Kðx; yÞ 8 B�nðt; yÞ dy ð4Þ

where B is the projection matrix from above and n is

again the vector of population stages. Neubert and

Caswell (2000) studied the spreading speed of dispersing
populations in this stage-structured integro-difference

equation. Lutscher and Lewis (2004) analyzed Eq. 4 on
bounded domains with respect to stability and bifurca-

tion behavior. Given certain ecologically reasonable

conditions on the matrices B and K, the integral
operator defined by the right-hand side of Eq. 4 has a

dominant eigenvalue that determines population growth
or collapse just as in the simpler matrix case (Eq. 1).

DISPERSAL KERNELS AND THE AVERAGE

DISPERSAL SUCCESS

Dispersal kernels can sometimes be derived from
mechanistic movement models (Neubert et al. 1995),

and they can also be obtained from experiments and
mark–recapture studies (Clark et al. 1999, Baguette

2003). One of the simplest mechanisms assumes that

individuals perform a random walk with diffusion

coefficientD and settle at a constant rate r. In one spatial

dimension, these assumptions lead to the double expo-

nential or Laplace kernel (Broadbent and Kendall 1953):

k1ðx; yÞ ¼
ffiffiffiffiffiffi
r
4D

r
exp �

ffiffiffiffiffi
r
D

r
jx � yj

� �
: ð5Þ

The same process in two space dimensions leads to the

kernel (Van Kirk 1995):

k2ðx; yÞ ¼
r

2p D
K0

ffiffiffiffiffi
r
D

r
jx � yj

� �
ð6Þ

where K0 is the modified Bessel function of the first kind

(Gradshteyn and Ryzhik 1980). The two-dimensional

kernel is unbounded at x ¼ y, and k1 is the marginal

distribution of k2. More complicated assumptions can

include individual behavior at habitat edges (Van Kirk

and Lewis 1999) or dispersal in heterogeneous landscapes

(Robbins 2004). Yet, quantifying dispersal in patchy

landscapes remains a major challenge in ecology, in part

because good empirical estimates of long-distance dis-

persal, which can be critical to characterizing the shape of

dispersal kernels, are difficult to obtain.

Here we focus instead on a different dispersal metric,

the ‘‘average dispersal success’’ (Van Kirk and Lewis

1997). This metric, which we will derive, has an

important advantage in applied settings because it is a

much better match to the types of ecological data that

are typically available for territorial species. Although it

is conceptually based on dispersal kernels, calculation of

a population’s average dispersal success requires knowl-

edge of localized dispersal instead of the more uncertain

long-distance dispersal. Nevertheless, the average dis-

persal success still captures essential information about a

species’ dispersal behavior and the geometry of its

habitat patch that can inform reserve design issues.

We first define ‘‘dispersal success’’ as the probability

that an individual, which starts dispersal at some

location inside the habitat, successfully settles inside

that habitat. Hence, dispersal success is specific to the

starting location. An individual close to a boundary is

more likely to leave the habitat than an individual at the

center, and would therefore have a lower dispersal

success. As a worst case analysis with respect to

conservation, individuals lost from the habitat are not

taken into account, regardless of whether or not they

survive outside that habitat. Incorporating landscape

complexities, such as habitat edges, actually would

change neither the formulation of the model nor the

tools presented in our manuscript.

The average dispersal success is defined as the spatial

average of the dispersal success over that habitat.

Mathematically, it is given by

p ¼ 1

jX j

Z
X

Z
X

kðx; yÞ dxdy ð7Þ

where jXj denotes the area of X. Regardless of the details

of a species’ dispersal kernel (including any effects that
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patch size, shape, or other characteristics may have on

the kernel), the average dispersal success metric is a

nondecreasing function of patch size (Fig. 1). Thus

defined, p is exactly the (spatial) average probability that

an individual remains within the habitat during dispersal

as defined in the previous section. Specific numerical

values for average dispersal success obviously depend on

the relationship between a species’ dispersal behavior

(such as average dispersal distance) and the patch

characteristics (such as size and shape). Therefore, given

a mechanistic movement model, the expression in Eq. 7

provides a mathematical answer to our first question.

For each kernel kij(x, y) we form the average dispersal

success pij (which ranges from 0 to 1) and collect these

quantities in the matrix P ¼ (pij).

THE AVERAGE DISPERSAL SUCCESS APPROXIMATION

We now use the average dispersal success to approxi-

mate the spatially explicit model (Eq. 4) by a much

simpler model, which nonetheless captures all the

necessary information. We first introduce the vector of

spatial averages of the different population stages:

nðtÞ ¼ 1

jX j

Z
X

nðt; xÞ dx: ð8Þ

Averaging both sides of Eq. 4, expanding in Taylor

series, and neglecting terms of higher order, we find that

over time n changes approximately as

nðt þ 1Þ ¼ ½P 8 B�nðtÞ: ð9Þ

Details of the derivation are given in Lutscher and Lewis

(2004). Note that Eq. 9 is exactly the matrix model (Eq.

2), which is the original nonspatial model (Eq. 1)

modified to include loss due to emigration. All of the

population dynamic parameters are given in thematrixB,

whereas the dispersal- and habitat-related details are

captured by P. This result provides the answer to

question (2). We have derived the heuristic model (Eq.

2) as the first term in a Taylor series of the model (Eq. 4),

in which the dispersal kernels kij might come from a

mechanistic description of movement. This derivation

puts Eq. 2 on firm ground mechanistically and mathe-

matically and, in addition, reduces the spatially explicit

model (Eq. 4) to amodifiedmatrix model, to which all the

well-developed tools of that modeling framework apply.

We now turn to question (3) and explore how the

persistence conditions (i.e., critical habitat size predic-

tions) of the spatially explicit model (Eq. 4) and the

simplifiedmodel (Eqs. 2 and 9) compare. Suppose that, in

the absence of any spatial considerations, the population

modeled by Eq. 1 grows, i.e., k(B) . 1. The same growing

population in a bounded habitat will suffer emigration

loss as described by Eqs. 2, 4, and 9. In a small habitat, an

individual has a small probability of staying during

dispersal; therefore, the entries of P for the dispersing

stages are small and the dominant eigenvalue of P 8 B is

small. As the habitat becomes larger, the average

dispersal success increases, and as the entries of P

increase, the dominant eigenvalue of P 8 B increases

(Lutscher and Lewis 2004). As the habitat becomes

infinitely large, the average dispersal success approaches 1

and the dominant eigenvalue of P 8 B approaches the

dominant eigenvalue of B. Hence, there is a unique

critical habitat size above which the population can

persist and below which emigration losses will override

local productivity, leading to extinction. Under the

assumption of symmetric dispersal, we demonstrate in

Appendix A that if a population can persist according to

the approximation (Eq. 9), then it can also persist

according to the full, spatially explicit model (Eq. 4).

Hence, the critical habitat size for the simplified model

will never be smaller than that for the full spatially explicit

model. The question of howmuch the critical domain size

is overestimated by the simpler model depends on other

model parameters and is currently under investigation.

Numerical comparisons can be found in VanKirk and

Lewis (1997) and Lutscher and Lewis (2004).

LINKING HOME RANGE SIZE TO RESERVE DESIGN

VIA AVERAGE DISPERSAL SUCCESS

The critical habitat size condition k(P 8 B) . 1 gives

lower thresholds for the values pij that guarantee

persistence of the population, independent of the

detailed movement behavior. This critical habitat size

can be estimated either using empirical data or by

making some assumptions about how individuals move.

For example, the functional relationship between the

average dispersal success and patch size could be

obtained empirically by measuring a species’ average

dispersal success over a range of differently sized

patches. Such data are probably available for many

species for which researchers are already attuned to the

effects that the size of a study area or habitat patch has

FIG. 1. Average dispersal success (Eq. 7) in relation to
patch area, using the two-dimensional kernel (Eq. 6); average
dispersal success is computed numerically. Average dispersal
distances have been rescaled to one (top curve), two (middle
curve), and four (bottom curve) spatial units. Results in one
spatial dimension are qualitatively comparable.
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on estimates of dispersal distances (e.g., Baker et al.

1995, Koenig et al. 2000, Lahaye et al. 2001). If we have

reason to assume a certain functional form (e.g., because

we have a mechanistic model for dispersal), we can use

the field data to fit the parameters of the theoretical

model directly. Otherwise, we can characterize the

dependence of a species’ average dispersal success on

patch length by fitting a single, monotonically increasing

curve to the data using standard techniques.

On the other hand, if we lack such data, we can also

estimate the critical habitat size for the population if

we make certain assumptions about individual move-

ment. Suppose individuals disperse by random walk

with constant settling probability as previously de-

scribed. The average dispersal success of the one-

dimensional Laplace kernel (Eq. 5) on the patch X ¼
[0, L] is given by

p ¼ 1�
ffiffiffiffiffi
D

r

r
1

L
1� e�

ffiffiffiffiffiffiffiffi
r =D
p

L
� �

ð10Þ

where
ffiffiffiffiffiffiffiffiffiffiffi
D=r

p
is the average dispersal distance. There is

no similar explicit formula for the two-dimensional case

(Eq. 6). In Fig. 1, we plot the average dispersal success for

a square patch X ¼ [0, L] 3 [0, L] of area L2. For

population persistence, the average dispersal success

must exceed a certain threshold, and because the average

dispersal success is an increasing function of the habitat

size, we can define this threshold in terms of a critical size

L . L*. (We refer to patch ‘‘size’’ to indicate the length in

the one-dimensional case and the length of one side of the

square patch in the two-dimensional case.) If we now

rewrite patch size as a multiple of the average home range

size of the species (H ), yielding L ¼ bH, then the

condition for persistence becomes b . L*/H. Therefore,

the minimum number of home ranges necessary to ensure

population persistence in the face of emigration losses is

given by b*, the smallest integer that exceeds L*/H.

APPLYING AVERAGE DISPERSAL SUCCESS TO EARLY-STAGE

PLANNING FOR SWIFT FOX

As an example of how these theoretical results could

be applied to a real species, we consider a population

with two only stages, juveniles and adults, denoted by nJ
and nA, respectively, and parameterize it for the swift fox

(V. velox), a relatively little-known, small-bodied canid

of the North American Plains (Schauster et al. 2002,

Harrison 2003, Kamler et al. 2003). The nonspatial

matrix model is given by

nJ

nA

� �
tþ1

¼ a b
c d

� �
nJ

nA

� �
t

: ð11Þ

Pooling data on survivorship and reproduction across

studies, we estimate the stage-specific demographic

parameters for swift foxes (V. velox) as follows. Survival

of juveniles as juveniles is a ¼ 0.0 (i.e., juveniles reach

adulthood their first year; Schauster et al. 2002,

Harrison 2003). Production of juveniles by adults is

b ¼ 0.7 (we obtain this estimate assuming that 60% of

females breed, with an average litter size of 2.4, and a 1:1

sex ratio; Schauster et al. 2002). Survival of juveniles and

maturation to adults is c ¼ 0.5 (a lower bound from

Kamler et al. [2003]), and survival of adults is d ¼ 0.85

(Schauster et al. 2002, Harrison 2003, Kamler et al.

2003). The dominant eigenvalue of the matrix in Eq. 11

with these parameters is k ¼ 1.15, which exceeds 1, so

that the population can persist in a nonspatial setting.

The sensitivity matrix is given by

0:2 0:34

0:48 0:79

� �
ð12Þ

so that we expect the population to be most vulnerable

to losses in the adult stage and the juvenile to adult

transition. The average dispersal success matrix P

consists of four entries characterizing the movement

and consequent loss of adults (pA), juveniles that remain

juveniles (pJJ), juveniles that mature to adults (pJA), and

new offspring produced (pJ). The average dispersal

success approximation for the critical habitat size is then

given by the dominant eigenvalue of the following

matrix:

pJJ pJ

pJA pA

� �
8

a b
c d

� �� �
: ð13Þ

We assume that juveniles stay with their parents until

they become adults and have to emigrate to find their

own territory. This implies an absence of dispersal-

related loss within the juvenile stages, and we have pJ¼
pJJ¼1. In Fig. 2A, we plot the conditions on pA and pJA,

under which this population can persist. We see that

persistence of swift fox populations is possible only in

areas where both juvenile and adult dispersal success are

sufficiently large (Fig. 2A). For example, pA can be as

low as 0.77 if all juveniles recruit locally, whereas pJA
can be as low as 0.45 if no adults emigrate.

Next we relate these thresholds to critical habitat size

by supposing that maturing juveniles and adults

disperse by random walk with constant settling rate,

as described previously. The results are plotted in Fig.

2B for the one-dimensional case and in Fig. 2C for the

two-dimensional case. The critical habitat size ranges

from just slightly larger than the average juvenile

dispersal distance (when adults do not disperse) to more

than five times that distance (if adults exhibit the same

dispersal outcomes as juveniles) (Fig. 2B). In the more

realistic two-dimensional case, the critical L* is again

slightly larger than the average juvenile dispersal

distance if adults do not disperse. If adults disperse

50% of the juvenile dispersal distance, then the critical

L* is about five times as high as the average juvenile

dispersal distance, whereas if adults disperse the same as

juveniles, it is almost eight times as high (Fig. 2C). From

Schauster et al. (2002), we take the estimate of 12 km

average dispersal distance for both juveniles and adults,

if they disperse. In the one-dimensional case, this
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estimate results in a critical length of the habitat of ;17

km in case adults do not disperse, and .60 km if adults
disperse at the same rate as juveniles. In two space

dimensions, the length of the side of a square habitat
would have to be 19 km (area 361 km2) and 96 km (9216

km2), respectively. In Appendix B, we outline some
aspects of sensitivity analysis for this model; here, we

simply report some numerical results. Varying the
average dispersal distance for juveniles by 10% while

assuming that adults do not disperse changes the
outcome by 11% in one dimension and 12% in two

dimensions, respectively. For comparison, the study

area of Schauster et al. (2002) is 1040 km2. Home range
size varied between day and night, male and female, and

season in Schauster et al. (2002), with a low of .2 km2

and a high of .10 km2. In a different landscape, Kamler

et al. (2003) found average home range sizes of just over
10 km2. Hence, in the two-dimensional case without

adult movement, one would need between 36 and
almost 200 home ranges to sustain a population.

A word of caution may be in order here. Schauster et
al. (2002) present data only on distances moved and the

range, but not the distribution, of distances. Before we
can apply the mechanistic kernel, we would want to

compare the theoretical and empirical distribution of

dispersal distances. Also, Schauster et al. (2002) classify
short-distance moves as ‘‘relocation’’ rather than dis-

persal and explicitly exclude those from the calculations.
Including these moves into the calculation for the average

distance seems to be more consistent with the assump-
tions of themechanistic movement model here and would

produce a smaller critical habitat size. One can incorpo-
rate a probability of dispersal a into the model in Eq. 3

(and similarly Eq. 4) by choosing the dispersal kernel as
k(x, y)¼aj(x, y)þ (1� a)d(x� y), where j describes the

actual dispersal events and the d function indicates that
individuals are not moving. The average dispersal success

p is given in terms of the average dispersal success pj of j
as p¼apjþ(1� a). Whereas the average dispersal success

approximation is analogous for these models, certain
mathematical subtleties prevent us from proving the

analogous statements for the spatially explicit model (see

Lutscher and Lewis 2004).

AVERAGE DISPERSAL SUCCESS WITHIN A METAPOPULATION

So far, we have concentrated on a single patch, but

the theory behind average dispersal success is equally
applicable in more complex landscapes. Here we show

FIG. 2. Dependence of swift fox population persistence on
average dispersal success; parameters are as in Eq. 11. (A) The
dominant eigenvalue as a function of the two average dispersal
success parameters. When the eigenvalue is greater than 1.0
(i.e., above the light gray plane), then the population can
survive; if it is ,1.0, the population will go extinct. (B) The
dominant eigenvalue as a function of patch length, assuming
dispersal according to the Laplace kernel (Eq. 5) in a one-
dimensional habitat. The unit length is taken to be the average
dispersal distance (rescaled) of juveniles. The solid line assumes
that adults do not move, i.e., pA ¼ 1. If adults move, then the

‹

critical patch size increases. The dashed line shows the result
when the average dispersal distance of adults is 20% of that of
the juveniles; the dash-dot line corresponds to the case when
adults have the same average dispersal distance as the juveniles.
(C) Similar to (B), but assuming dispersal in two dimensions
(patch area, rescaled) according to the kernel (Eq. 6). The patch
is taken to be X¼ [0, L] 3 [0, L] with area L2. The dashed line
now represents adult dispersal at half of the juvenile dispersal
distance.
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how the concept can be extended to a metapopulation.

For simplicity, we illustrate this issue for an unstruc-

tured (i.e., single-stage) population in a habitat with

only two disjoint patches, X1 and X2 (which may be of

different size, shape, and/or quality). The integro-

difference equation now reads

nðt þ 1; xÞ ¼
Z

X1[ X2

kðx; yÞbðyÞnðt; yÞ dy ð14Þ

where the reproduction term b(y) may depend on

location. We could, as before, average the density over

the two patches and use the average dispersal success to

obtain an approximation for the critical habitat size. In

this case, the average dispersal success gives the average

probability that an individual stays anywhere in the two

patches combined (see Fig. 3). However, this approach

will not allow us to incorporate different habitat quality

in the two patches. To deal with issues of different patch

qualities, we form the average of the population density

over each of the two patches separately (denoted n1 and
n2, respectively). We assume that production is homoge-

neous in each of the patches and denote it by b1,2 on

X1,2, respectively. Next, we form the average dispersal

success from patch j into patch i as

pij ¼
1

jXij

Z
Xi

Z
Xj

kðx; yÞ dydx ð15Þ

which reduces to Eq. 7 when i ¼ j. For i 6¼ j, the

expression denotes the average probability that an

individual from patch j successfully settles in patch i.

Note that such data on interpatch movement can be

obtained empirically if individuals are marked differ-

ently depending on their source patch, and both target

patches are monitored for dispersers. Hence, pij takes

into account the area of the respective patches as well as

the distance between them. The average dispersal success

approximation leads to the following equation:

n1ðt þ 1Þ
n2ðt þ 1Þ

� �
¼ p11b1 p1;2b2

p21b1 p22b2

� �
n1ðtÞ
n2ðtÞ

� �
: ð16Þ

The matrix in Eq. 16 contains the parameters for

reproduction (bj) and the average dispersal success from

Eq. 15 (pij). (Note again, that subscripts now denote

patch number and not stage.) If the dominant eigenvalue

of the matrix in Eq. 16 is greater than 1, the

metapopulation of the two patches combined can grow,

whereas if the eigenvalue is less than 1, the metapopu-

lation will decline. Suppose, for example, that each of

the two patches alone is too small to sustain a

population. By the average dispersal success approx-

imation, this is the case if p11b1 , 1 and p22b2 , 1.

According to Eq. 16, the population on the two patches

combined can survive if

p12b1p21b2 . ð1� p11b1Þð1� p22b2Þ: ð17Þ

This condition, which can also be derived directly from

matrix population theory (Caswell 2001), has a straight-

forward interpretation. The combined gain from repro-

duction and cross-migration between patches, which is

given by the expression on the left-hand side, must

exceed the loss from the network, which is given by the

expression on the right-hand side.

DISCUSSION

Recasting theoretical models with dispersal in terms

of the average dispersal success is advantageous for two

major reasons. First, and perhaps more important to

field ecologists, the average dispersal success is useful

because it is directly connected to the kinds of empirical

data routinely available from field studies involving

demographic and/or mark�recapture techniques. The

fraction of dispersing individuals that remain inside a

well-monitored patch (or patch network or demarcated

study area) is far easier to obtain from field studies than

anything involving movement outside that patch (or

network or demarcated study area). For example, if

researchers ‘‘simply’’ mark juveniles living inside a

patch, and then monitor that patch to identify which

juveniles successfully disperse from their natal range to

obtain a home range in the same patch, they can

calculate the average dispersal success for the patch.

Researchers could, of course, use the fraction of

dispersing individuals directly in patch models, but

having dispersal kernels as a mechanistic basis of the

average dispersal success framework is a key advantage

in those cases in which there is reason to suspect that

dispersal will be similar in different (but unstudied)

patches or landscapes. However, even though average

dispersal success offers some distinct advantages because

of its close match to the types of dispersal data typically

available from field studies, the approach could still fail

to provide useful information if the amount of dispersal

FIG. 3. Contour plot showing different levels of the
average dispersal success (p) of the Laplace kernel for a one-
dimensional habitat consisting of two patches of equal length
and depending on the length of the gap between the patches.
Rescaled length variables are unitless.
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data available is insufficient to accurately characterize

the fraction of individuals that settle locally.

For marking�monitoring programs that cover multi-

ple patches, the average dispersal success framework for

analyzing dispersal becomes increasingly advantageous

because, in combination with patchwise demographic

data, it allows for estimates of metapopulation growth or

decline. Consequently, the average dispersal success

framework could prove especially helpful in field systems

where little is known about the details of dispersal

through matrix habitat, but where successful movements

among patches are actively monitored. Extensions of the

average dispersal success framework may also be

relevant to planning for marine protected areas where

issues of juvenile dispersal are of critical importance (e.g.,

Dugan and Davis 1993, Sanchirico and Wilen 2001,

Lockwood et al. 2002). This is because a key goal in

marine reserve theory is to balance local recruitment

success and leakage of recruits across the reserve

boundary to augment fisheries in the surrounding waters.

The second major advantage, perhaps of more interest

to theoreticians, is that the average dispersal success

allows complex, spatially explicit models to be reduced

in complexity, often to a substantial degree. For

example, the average dispersal success provides a means

of reducing complex, difficult-to-analyze models, such as

the integro-difference equation system in Eq. 4, to the

projection-matrix framework of structured population

models, which are well-understood and well-developed

theoretically (Caswell 2001) and which are also widely

used by empiricists. Average dispersal success is

quantitatively appealing because it can be derived

analytically for a variety of mathematical dispersal

kernels whose origins in behavioral ecology are under-

stood (Stamps et al. 1987, Neubert et al. 1995, Lutscher

and Lewis 2004). For other types of dispersal behavior,

carefully developed simulation models (e.g., Gustafson

and Gardner 1996) could also be used to estimate the

average dispersal success for patches or networks of

patches. As a theoretical tool, the average dispersal

success actually has even broader utility. For example, it

can be used to study approximate conditions for

stability of nonzero steady states (Lutscher and Lewis

2004) and even periodic orbits in host�parasitoid
systems (Cobbold et al. 2005). A major theoretical

challenge is to characterize the mathematical relation-

ship between landscape-scale statistics (e.g., percentage

of habitat, patch size, fragmentation) and average

dispersal success for a species living in and moving

through that landscape. Clearly, this theoretical chal-

lenge is linked to the broader need for theoretical study

of dispersal in heterogeneous landscapes. An additional

theoretical challenge would be to use empirical average

dispersal success from a patch network in an inverse

problem to characterize the species’ dispersal kernel.

Because the relevant data are frequently available,

estimates of a species’ home range size often enter into

reserve planning exercises and habitat management

analyses (e.g., Locke 1996, Wielgus 2002). For example,

many studies of vertebrate dispersal quantify dispersal

distances in terms of the number of home ranges traversed

by a dispersing individual (e.g., Greenwood et al. 1979,

Stamps et al. 1987,Newton andWyllie 1991,Matthysen et

al. 1995). Likewise, researchers who adopt a minimum

viable population framework for reserve design may

quantify habitat needs for the reserve in terms ofmultiples

of home range size (Wielgus 2002,Haight et al. 2004). The

average dispersal success framework provides a way to

synthesize data pertinent to territory structure, demog-

raphy, and natal dispersal into structured population

modeling, a mathematical technique that is broadly used

in ecology and conservation biology.

Continued development of the average dispersal

success framework, from both empirical and theoretical

perspectives, will help to link key aspects of a species’

social and dispersal behavior with its metapopulation

dynamics. In particular, a meta-analysis of empirical

data that quantifies how average dispersal success

depends upon habitat size for a diversity of species in

different landscapes would be quite instructive to

theoretical models dealing with critical habitat size.

Likewise, theoretical investigations of how different

types of individual movement behaviors in heteroge-

neous landscapes translate into kernel-type representa-

tions of dispersal outcomes would help to answer the

overarching question of when we can rely on generalized

approximations to describe dispersal and when we must

focus on the specific details of particular species 3

landscape combinations.
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