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Abstract. Diffusion approximation (DA) methods provide a powerful tool for popu-
lation viability analysis (PVA) using simple time series of population counts. These methods
have a strong theoretical foundation based on stochastic age-structured models, but their
application to data with high sampling error or age-structure cycles has been problematic.
Recently, a new method was developed for estimating DA parameters from highly corrupted
time series. We conducted an extensive cross-validation of this new method using 189 long-
term time series of salmon counts with very high sampling error and nonstable age-structure
fluctuations. Parameters were estimated from one segment of a time series, and a subsequent
segment was used to evaluate the predictions regarding the risk of crossing population
thresholds. We also tested the theoretical distributions of the estimated parameters. The
distribution of parameter estimates is an essential aspect of a PVA because it allows one
to calculate confidence levels for risk metrics. This study is the first data-based cross-
validation of these theoretical distributions. Our cross-validation analyses found that, when
parameterization methods designed for corrupted data sets are used, DA predictions are
very robust even for problematic data. Estimates of the probability of crossing population
thresholds were unbiased, and the estimated parameters closely followed the expected
theoretical distributions.

Key words: Dennis method; Dennis-Holmes method; diffusion approximation; extinction; model
validation; population viability analysis; salmon; sampling error.

INTRODUCTION

Population viability analysis (PVA) has become a
standard tool in conservation biology (Boyce 1992).
Conservation organizations such as The Nature Con-
servancy use it to rank the quality of sites, the IUCN
(International Union for the Conservation of Nature)
uses it to establish the degree of risk faced by species,
and federal agencies use it to assist management de-
cisions regarding threatened and endangered species.
In spite of its widespread use, there is vigorous debate
in the academic literature regarding the merit of PVA
models. Opinions range from the argument that PVA
is a poor idea because confidence intervals surrounding
risk metrics are too large (Fieberg and Ellner 2000)
and sampling error makes parameterization error-prone
(Ludwig 1999), to the belief that PVA can be used to
establish relative risk even though absolute estimates
are tenuous (Fagan et al. 2001), to the contention that
PVA is supported by data and sufficiently accurate for
risk assessments (Brook et al. 2000). Missing in this
debate have been rigorous validation studies with large
and long-term data sets. Brook et al. (2000) presented
the first such validation study and examined detailed
age-structured PVAs. This type of PVA, however, re-
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quires detailed population data; unfortunately, such
data are seldom available. Instead, simple population
counts are often the only available data for species of
conservation concern. Although PVA methods for
count data exist, cross-validations of these methods are
lacking.

In this paper, we examine diffusion approximation
(DA) methods for count-based viability analysis using
a data set of 189 time series from western North Amer-
ican salmon, many from populations that are currently
listed as endangered or threatened under the U.S. En-
dangered Species Act. Although DA methods have
been used in a variety of conservation settings (Nich-
olls et al. 1996, Gerber et al. 1999, NMFS 2000), they
are known to be sensitive to sampling error and other
non-environmental variability in the data. Salmon time
series suffer from such problems to an extreme degree.
The data are characterized by high observation errors,
and the life history of salmon makes them prone to
severe age-structure oscillations. Such problems hide
the underlying stochastic process. The standard meth-
ods for estimating DA parameters are designed for low
non-environmental noise (Dennis et al. 1991) and fail
in this situation.

A new DA method was recently developed (Holmes
2001) to handle these types of data problems by par-
titioning the variability of a population time series into
‘‘non-process’’ error, such as observation errors or cy-
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cles linked to age-structure perturbations, vs. ‘‘process
error,’’ the environmental variability driving the long-
term statistical distributions of population trajectories.
Here, we cross-validate the new method using time
series of salmon. Our large number of long time series
allows us to cross-validate not only the bias in risk
metrics (as did Brook et al. 2000), but also the statis-
tical distributions of the estimated parameters. The sta-
tistical distributions of parameter estimates are perhaps
the most critical aspect of a PVA because they allow
one to calculate the uncertainty in one’s risk estimates.
Point estimates of risk metrics, such as the probability
of extinction in x years, are by themselves of limited
value, because even a simple comparison of risk be-
tween populations is meaningless without knowledge
of the statistical distribution of the estimated risk met-
ric. One strength of DA methods is that these distri-
butions can be calculated. However, these calculations
require numerous simplifying assumptions. Our study
presents the first empirical cross-validation of these
calculated distributions and, consequently, the theory
underlying DA methods for PVAs.

METHODS

We assembled a data set of 147 chinook salmon and
42 steelhead time series of yearly spawner indices from
databases maintained by the U.S. National Marine Fish-
eries Service and the Pacific States Marine Fisheries
Commission (summarized in Appendix A with raw data
in Supplement 2). The data are from Evolutionarily
Significant Units (ESUs) in Washington, Oregon, and
California, USA, and consist of egg-bed counts, dam
counts, carcass counts, peak live counts, or total live
estimates. Each time series was divided into 20-, 30-,
or 40-yr overlapping segments (depending on the anal-
ysis), with the segments separated by five years; e.g.,
a 1960–1999 time series would be divided into the 30-
yr segments: 1960–1989, 1965–1994, and 1970–1999.
To limit overrepresentation of long time series, we al-
lowed a maximum of 10 randomly chosen segments
from each time series. To limit overrepresentation by
two ESUs with a disproportionate number of time se-
ries, only one segment (randomly chosen) was used
from each time series in the Snake River spring/summer
chinook ESU, and only three were used from each se-
ries in the Oregon Coast chinook ESU. These restric-
tions applied to all analyses except the s2 estimates,
which required a larger sample size. We also did a
separate comparative analysis focused on a smaller
geographic scale, using all time series in the Snake
River spring/summmer chinook ESU in the Columbia
River basin.

Each segment was divided into a parameterization
period followed by an evaluation period. Parameter dis-
tributions and risk levels were predicted from the pa-
rameterization period, and then the data in the evalu-
ation period were used to test these predictions. We
did two basic analyses. First we cross-validated the

parameter distributions estimated from the parameter-
ization period; this tests the distributions used to cal-
culate confidence intervals for DA risk metrics. Sec-
ond, we asked, ‘‘Do diffusion approximations properly
estimate the probability of crossing population thresh-
olds?’’ This cross-validation addresses whether DAs
are a reasonable tool for analyzing the risks of decline
evident in the actual salmon population trajectories.

Estimating population viability metrics from
corrupted counts

DA methods for viability analysis arose from den-
sity-independent, stochastic, age-structured models.
Such population processes can be approximated by:
Nt11 5 Ntexp(m 1 «p), where «p ;Normal(0, sp) (Tul-
japurkar 1989, Dennis et al. 1991). This model is a
stochastic process where the annual population growth
rate is a lognormally distributed random variable. The
median annual growth rate is m. The stochasticity in
the annual growth rate is determined by the process
error term, «p, which is normally distributed with var-
iance . A diffusion approximation of this process2sp

gives the statistical distribution of the ratio of popu-
lation size at time t vs. the population size at time t
later: ln(Nt1t /Nt) is distributed Normal(mt, sp ).Ït
From this distribution, risk metrics such as mean long-
term growth rates, probabilities of decline or extinc-
tion, and the mean time to extinction can be calculated
(Dennis et al. 1991). Dennis et al. discuss methods for
estimating m and using a time series of counts. These2sp

methods work well when the variability due to non-
process error (e.g., sampling error or strong age-struc-
ture cycles) is low (see the petrel example in Holmes
2001). However, when the data are characterized by
high non-process error, as are salmon data (Hilborn et
al. 1999), the standard methods result in severe over-
estimates of , leading to poor estimation of risk met-2sp

rics (Holmes 2001).
To deal with such problems, an alternative param-

eterization method was developed (Holmes 2001). We
refer to viability analysis using this method as the Den-
nis-Holmes method, wherein estimation of model pa-
rameters follows Holmes (2001) and calculation of the
risk metrics from the parameters follows Dennis et al.
(1991). This method seeks to estimate m and from2sp

a time series representing highly corrupted observa-
tions, Ot, of the true population size, Nt:

N 5 N exp(m 1 « ) where « ; Normal(0, s )t11 t p p p

O 5 N exp(« ) where « ; f (b, s ). (1)t t np np np

The parameter «np represents the level of non-process
error that corrupts the observations of the true popu-
lation size. It has some unknown distribution with mean
b and variance s . This noise makes the underlying2

np

environmental variability ( ) impossible to observe2snp

directly. The log of Eq. 1 is known as a linear state–
space model. Such models are extensively studied in



September 2002 2381VALIDATING PVA FOR CORRUPTED DATA

R
epo

r
ts

the engineering literature, and Expectation–Maximi-
zation (EM) algorithms using Kalman filters have been
developed to estimate the parameters from noisy data
(Shumway and Stoffer 1982, Ghahramani and Hinton
1996), but to accurately estimate «p, these methods re-
quire information about the non-process error, partic-
ularly the bias, b. Such information is often not avail-
able for ecological data.

The method by Holmes (2001) adopts another ap-
proach designed for DA models used for population
processes and does not require information about the
non-process error. It takes advantage of the contrasting
effects of process error (the environmental variability)
vs. non-process error (e.g., sampling error) on the var-
iance between Ot1t and Ot, namely var(ln(Ot1t /Ot)) 5

1 . This suggests that the slope of var(ln(Ot1t /2 2s t sp np

Ot)) vs. t could recover the process error term in the
face of high corruption. Unfortunately, this regression
has problems for short time series because negative
slopes (i.e., negative variance estimates) are frequent.
The method circumvents this problem by noting that a
short sum of L sequential Ot’s (Rt 5 Oi1i21) retainsLSi51

the variance vs. t relationship, but filters out the noise.
The estimate, termed , is the slope of a regression2 2s ŝp slp

of var(ln(Rt1t /Rt)) vs. t with the intercept free. Simu-
lations indicate that L 5 3 to 5 is a good compromise
between loss of information due to high filtering and
errors due to low filtering (see Holmes 2001; also see
Appendix B). For all of our analyses, L 5 4 and max
t 5 4.

Numerical simulations indicate that has approx-2ŝslp

imately a x2 distribution:

2df ŝslp slp 2; x . (2)dfslp2s slp

For a time series of length n, dfslp 5 0.333 1 0.212n
2 0.387L for n . 15, gives a good estimate of the
degrees of freedom. See Appendix B for a discussion
and derivation of the x2 distribution and the numerical
estimation of the formula for dfslp. Note, is a biased2ŝslp

estimator of . Appendix B shows the bias for simple2sp

lognormal observation error, and Holmes (2001) shows
the biases using stochastic matrix models. In general,
the bias will be poorly known, but the cross-validation
results indicate that the level is not so severe as to
significantly affect the predictions.

Estimation of m from the corrupted time series does
not generally suffer from bias, but does suffer from
loss of precision. Use of running sums (the Rt’s) helps
to reduce this problem: R is the sample mean ofm̂
ln(Rt11/Rt). For snp small (e.g., ,1) and L small, the
distribution of this estimate is:

m̂ ; Normal(m, s ) whereR m,R

1 2
2 2 2s 5 s 1 (n 2 L)s . (3)m,R np p21 2(n 2 L) L

As the time series length, n, increases, the variance of

R goes to /(n 2 L). This suggests that we could2m̂ sp

estimate the distribution of R from the data by usingm̂
our estimate of , i.e., from :2 2s ŝp slp

m̂ 2 m 1R ; tdfslp2Ïŝ /(n 2 L) Ïgslp

where

2s slp
g 5 . (4)

2
2 2s 1 snp p1 2L(n 2 L)

Although g is unknown, its range is not large (see
Appendix B). For the salmon data sets, the observed
mean g was 0.7–1.2. Note that for corrupted time series,
var( R) ± var(ln(Rt11/Rt))!m̂

Derivations for Eqs. 2–4 are in Appendix B. The
distributions of the estimated parameters (Eqs. 2–4)
are approximate and involve a variety of simplifying
assumptions. One main goal of this cross-validation is
to test whether these approximate distributions are sup-
ported by data. This is critical because these distri-
butions are used to calculate confidence intervals for
risk metrics. Supplement 1 has S-PLUS code for es-
timating R, , , and from a time series, and2 2 2m̂ ŝ ŝ ŝslp m,R np

S-PLUS code for estimating risk metrics and confi-
dence intervals.

Cross-validating parameter distributions using
time series

Our first cross-validation tested whether the R es-m̂
timates from the data are consistent with the theoretical
distribution of R (Eq. 4). To do this, we derived a tm̂
distribution governing the difference between R fromm̂
the parameterization and evaluation periods ( R,p 2m̂

R,e):m̂

(m̂ 2 m̂ ) 1R,p R,e
; t .2dfslp

2 2 Ïgdf ŝ 1 df ŝ 1 1slp slp,p slp slp,e
11 2! 2df n 2 L n 2 Lslp p e

(5)

The t statistic (the right-hand side of Eq. 5) was de-
signed so that it has the same t distribution regardless
of m or (See Appendix C). In this way, the t statistics2sp

from all the segments and time series could be com-
bined and tested for their conformity to a single t dis-
tribution (the left-hand side of Eq. 5). It is not possible
to simply compare R’s to some distribution becausem̂
each time series represents a different population with
a different underlying distribution of annual growth
rates driving its stochastic population process (i.e., the
m’s and ’s are different). For this analysis, we used2sp

15-yr parameterization (p) and evaluation (e) periods
(to derive the t distribution, the periods must be the
same). With n 5 15, dfslp ø 1.96.

For the second cross-validation, we examined wheth-
er the ratios of from the evaluation period to2ŝslp,e
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FIG. 1. Histogram of the predicted vs. observed distribution of R, the estimate of median annual population growth rate.m̂
The solid lines show the expected (theoretical) t distribution governing the difference between R measured in the param-m̂
eterization vs. evaluation periods. The bars show the observed distribution of t statistics measured from the actual time series.
The P values are from a Kolmogorov-Smirnov goodness-of-fit test to a t distribution with 2 3 1.96 degrees of freedom: t3.92/

, where g for each species was estimated from the data. For the chinook and steelhead analyses, the set of segments usedÏg
was variable because of random subsampling to reduce overrepresentation by long time series and by ESUs (Evolutionarily
Significant Units) with many time series. The analysis was repeated 100 times with different random samples of segments.
For the chinook analysis, the 5% and 95% quantiles for the P values and g’s were (0.50 and 0.93) and (1.07 and 1.27),
respectively. For the steelhead analysis, the 5% and 95% quantiles for the P values and g’s were (0.24 and 0.58) and (0.71
and 0.77), respectively.

from the parameterization period were consistent2ŝslp,p

with the expected distribution of (Eq. 2). If so,2ŝslp

( / ) ; F(dfslp, dfslp). We examined three paired2 2ŝ ŝslp,e slp,p

lengths of parameterization and evaluation periods (10
yr, 10 yr, dfslp ø 1.4), (15 yr, 15 yr, dfslp ø 1.96), and
(20 yr, 20 yr, dfslp ø 3.0). This allowed us to compare
the observed ratios to three different expected F2ŝslp

distributions corresponding to the different dfslp values.
To estimate F distributions with low degrees of free-
dom, we needed a large sample size, and therefore we
pooled the chinook and steelhead data and did not sub-
sample the Snake River spring/summer chinook and
Oregon Coast chinook ESUs. This analysis studied the
distribution of ; the next analysis explored the de-2ŝslp

gree and effect of bias between and .2 2ŝ sslp p

Cross-validating the probability of crossing
population thresholds

The DA estimate of the probability that an observed
trajectory will decline from Ostart at the beginning of
an evaluation period to at or below xOstart at the end of
an evaluation period is the following:

ln(x) 1 m̂ tR ePr(O # xO ) 5 1 2 Fend start 1 22 2Ï2s 1 ŝ tnp slp e

assuming « ; Normal(0, s ) (6)np np

where F(·) is the cumulative distribution of the unit
normal and te is the length of the evaluation period
(Dennis et al. 1991). We used a metric pertaining to
the observed trajectory because the true trajectory is
hidden. A point estimate of , 5 (var(ln(Nt11/Nt))2 2s ŝnp np

2 )/2, was used for this calculation (see Appendix2ŝslp

B). Pr(Oend # xOstart) is much less sensitive to than2snp

other metrics, such as the probability that the time to
first crossing is less than te, and this makes it especially
useful for validating bias in estimates.2sp

We compared the observed fraction of evaluation
periods experiencing a given decline to the expected
fraction. The expected fraction is the average Pr(Oend

# xOstart) calculated over all segments. Differences be-
tween the expected and observed fractions may either
indicate that the underlying DA approach is simply a
poor approximation of the real trajectories, or may in-
dicate persistent bias in the estimated parameters. For
example, under- or overestimation of m leads to under-
or overestimation of the probability of crossing thresh-
olds, whereas overestimation of leads to underes-2sp

timation of the probability of hitting x . 1 thresholds
combined with overestimation of the probability of hit-
ting x , 1 thresholds.

RESULTS

Fig. 1 shows the observed and expected distribution
of R,p 2 R,e. The close agreement between the ob-m̂ m̂
servations and predictions supports that on average Rm̂
is an unbiased estimator of the long-term rate of
growth/decline and that the theoretical distribution of

R is correct. To examine whether density dependencem̂
led to changes in m, we examined the association be-
tween R,p 2 R,e and the overall rate of growth/declinem̂ m̂
within a segment. The observed mean t statistics for
segments increasing at .5% per year (n 5 42), fluc-
tuating between 2.5% and 22.5% annual growth (n 5
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FIG. 2. Predicted vs. observed distribution of the process error estimate, . The solid lines show the theoretical F2ŝslp

distribution of the ratio between measured in the parameterization vs. evaluation periods (slp 5 slope). The histogram2ŝslp

shows the observed distribution of log-transformed F statistics measured from the actual time series. The P values are from
a Kolmogorov-Smirnov goodness-of-fit test of the observed F statistics to fF(dfslp, dfslp), where dfslp is ø1.42, 1.96, and 3.0
for the 10-, 15-, and 20-yr analyses, respectively. For this analysis, segments from both chinook and steelhead time series
were evaluated together. The analysis with 10-yr parameterization and evaluation periods (right-hand graph) required only
20 yr of data (rather than 30–40 yr); thus, we were able to use an additional 91 shorter time series of data for this specific
analysis.

128), or decreasing .5% (n 5 78) per year was 0.59
(P 5 0.001), 20.34 (P 5 0.18), and 20.06 (P 5 0.80),
respectively. The P values are for a test of whether the
t statistics come from a t distribution with mean 0; i.e.,
whether R,p 5 R,e. Thus, for fluctuating or rapidlym̂ m̂
declining segments, there was no significant difference
between the median annual growth rates in the param-
eterization and evaluation periods. However, for seg-
ments that exhibited rapid increases in population size,
the mean rate of growth within the parameterization
periods (with smaller population size) was significantly
greater than the mean rate within the evaluation periods
(with larger population size).

Fig. 2 shows the observed vs. expected distribution
of F statistics for the / ratios. In the plots, the2 2ŝ ŝslp,e slp,p

F statistics were log-transformed to make visual com-
parison easier. The observed distributions were very
close to (a constant, f) 3 F(dfslp, dfslp) with the ex-
pected degrees of freedom. Fit was determined by Ko-
lomogorov-Smirnov goodness-of-fit tests. This indi-
cated that had the expected x2 distribution, but the2ŝslp

constant, f, indicated a consistent bias between 2ŝslp,p

and . Specifically, was greater than by a2 2 2ŝ ŝ ŝslp,e slp,e slp,p

factor of 1.3, 1.7, and 1.5 for the 10-, 15-, and 20-yr
analyses, respectively. Closer examination showed that
the bias occurred only in the rapidly declining stocks
characterized by an evaluation period with very low
count numbers (e.g., 0–10 egg nests counted in a cen-
sus) following a parameterization period with higher
count numbers. We suspect that the bias occurred be-
cause of increased sampling error when counts are very
low. When this happens, large percentage errors are
common, because doubling or even tripling of the count

represents a small difference in absolute numbers.
Higher sampling error increases the expected value of

and would lead to the bias that we observed.2ŝslp

Fig. 3 shows the observed and expected fraction of
segments declining to or below different threshold lev-
els in 10 or 20 yr. This analysis used 20-yr parame-
terization periods. The solid gray lines show the ex-
pected fraction when parameters were calculated with
the Dennis-Holmes method. We found close agreement
between the observed and expected fractions for the
10-yr projections. For the 20-yr projections, the pre-
dictions began to diverge. The divergence is charac-
teristic of the biases that occur due to variability (rather
than bias) in m estimates. However, some of the di-
vergence also occurred because the set of time series
with 401 years needed for the 20-yr analysis included
a larger fraction of increasing time series than the set
of time series with 301 years for the 10-yr analysis.

We noted previously that m declined in the rapidly
increasing segments. This should lead to underesti-
mation of the risk of crossing thresholds, and indeed,
for the rapidly increasing segments, we saw precisely
this pattern. We also observed changes in , but we2ŝslp

suspect that this was due to changes in the level of
sampling error rather than temporal changes in . In-2sp

deed, the close correspondence between the observed
and expected probabilities of decline indicated that the
correspondence between and was close enough2 2ŝ sslp p

to permit unbiased predictions. For comparison, the
expected fractions using estimated with standard2sp

parameterization methods (Dennis et al. 1991) are
shown with the dashed gray lines. For highly corrupted
data, these methods overestimate , and the shift be-2sp
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FIG. 3. Observed vs. predicted fraction of segments that reach population thresholds in 10 or 20 years. Segments were
evaluated by determining whether the count at the end of the evaluation period, Oend, was less than or equal to xOstart, where
Ostart is the count at the start of the evaluation period. The x-axis (note log scale) is the factor x in xOstart. The 20-yr projection
was only done for the chinook data set for which there were sufficient numbers of long time series. The predicted fractions
were calculated using estimates of from the ‘‘standard’’ methods of Dennis et al. (1991) vs. the Dennis-Holmes (‘‘D-H’’)2sp

method.

tween the observed and predicted lines is characteristic
of high overestimation of . However, note that if data2sp

corruption is very low, the standard methods should
give unbiased and less variable estimates.2sp

DISCUSSION

There are many reasons to expect viability assess-
ments to fail (Coulson et al. 2001). A common concern
is that population processes are not sufficiently sta-
tionary, meaning that the parameters describing the
process change through time. For salmon, this might
happen because reproduction is density dependent (as
is normally assumed) or because environmental vari-
ability is autocorrelated. However, our analysis found
that, despite an assumption of no density dependence
and a host of other simplifying assumptions (such as
low demographic stochasticity, stationarity, and low
auto-correlation), DA methods worked remarkably
well for describing the statistical distribution of fluc-
tuating or declining population trajectories. Only for
rapidly increasing populations did we see evidence of
shifts in annual growth rates that were sufficient to
cause overestimation of the risk of crossing thresholds.

It should not be entirely surprising that DAs worked
well for all but the rapidly increasing stocks; the as-
ymptotic behavior of generalized stochastic age-struc-
tured population models (with survivorships and fe-
cundities drawn from any of a variety of statistical
distributions) is described by a DA model. Serious
problems would not be expected unless there were se-
rious violations of the stationarity assumptions. Our
results, however, are striking because we concentrated
exclusively on ‘‘problematic time series’’ plagued by
high observation error and other non-process error.
This noise masks the environmental variability that
drives the statistical distributions of stochastic popu-
lation trajectories. Indeed, it has been one of the crit-
icisms of PVA analyses that they are sensitive to errors
in the data (Ludwig 1999). Using a new method for
correcting for such problems, we showed that unbiased
estimates of parameters and probabilities of decline are
possible. Our cross-validation results give empirical
support for the Dennis-Holmes method for error-ridden
data sets and, more generally, for count-based PVA
analyses using diffusion approximations.

In any PVA analysis, one needs to address how to
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present risk metrics, given parameter uncertainty. A
strength of the Dennis-Holmes method (like other DA
approaches) is that the parameter distributions can be
calculated, have a strong theoretical foundation based
on age-structured models, and, with these analyses,
also have empirical support. These distributions allow
one to calculate risk metric uncertainty in a rigorous
manner. The most common approach has been to pre-
sent point estimates of risk metrics with confidence
intervals, but confidence intervals can be very broad
and can give the mistaken impression that there is little
support for any specific risk level. An alternate, ar-
guably more informative, approach presents the overall
support for risk ranges. For example, ‘‘Given the data,
what is the probability that the population is collapsing
at .10% per year, or that it will go extinct in 20 yr or
less?’’ This approach is common in Bayesian methods
for conservation and fisheries biology (Hilborn and
Mangel 1997, Wade 2000, 2001). Frequentist ap-
proaches using likelihood inference are also available
(for a review, see Wade 2001).

Practical, count-based PVA methods have prolifer-
ated in the last ten years in response to the needs within
conservation biology, because sufficient data for full
PVA models are not normally collected or even
planned. Indeed, a recent survey found that of 136
recovery plans approved by the U.S. Fish and Wildlife
Service, only 23% proposed collecting sufficient data
for an age-structured PVA model, whereas 78%
planned to collect data sufficient for a count-based PVA
(Morris et al. 2002). Methods to deal with high data
corruption greatly expand the utility of count-based
PVAs, but new methods are still needed in many areas.
Standardized methods for dealing with cycles and
trends within population time series and for incorpo-
rating incomplete life history information are clearly
needed. Algorithms used in computer graphics and en-
gineering for analyzing corrupted signals may prove
particularly useful in these regards. However, they will
need to be adapted to fit the constraints particular to
ecological and conservation data.
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APPENDIX A

A table presenting the salmon time series used in the analyses is available in ESA’s Electronic Data Archive: Ecological
Archives E083-047-A1.

APPENDIX B

Derivations of the distributions of the estimated parameters are available in ESA’s Electronic Data Archive: Ecological
Archives E083-047-A2.
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APPENDIX C

A derivation of the distributions for cross-validating parameter estimates is available in ESA’s Electronic Data Archive:
Ecological Archives E083-047-A3.

SUPPLEMENT 1

The S-PLUS code for estimating Dennis-Holmes parameters and calculating risk metrics from a time series is available
in ESA’s Electronic Data Archive: Ecological Archives E083-047-S1.

SUPPLEMENT 2

Raw data for the salmon time series used in the cross-validations are available in ESA’s Electronic Data Archive: Ecological
Archives E083-047-S2.


