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Abstract. Previous efforts to use the Euler equation to estimate maximum population
growth rates (variously symbolized as either r, rm, or rmax) have used simplified models of
survivorship that neglect differences in survivorship schedules among species. In particular,
several recent analyses have used either an exponential model of survivorship or a step
function model in which all individuals live until a fixed age of death. Using a flexible
alternative based on the beta distribution and a compiled data set of mammalian survivorship
curves for 58 species, we explore the influence of survivorship shape and scale on the
estimation of r. We show that the Euler equation paired with an exponential model of
survivorship can be used to calculate an unbiased estimate of r over a large range of body
sizes, whereas the more commonly used step function survivorship model results in severely
inflated estimates of r, especially for mammals with large maximum population growth rates.
Finally, we demonstrate that, despite producing different absolute estimates of r, the three
survivorship models examined yield similar allometric scaling coefficients relating r to
biomass. These allometric scaling relationships are highly sensitive to the inclusion or
exclusion of bats (Chiroptera), which exhibit life-history traits (long life spans, small litter
sizes, and relatively long litter intervals) inconsistent with their small body size.

Key words: allometry; beta distribution; Cole approximation; Euler equation; life history; maximum
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INTRODUCTION

Accurate estimation of population growth rate is

critical for diverse problems in ecology, including

empirical tests of allometric predictions of the metabolic

theory of ecology (Brown et al. 2004, Savage et al. 2004,

Duncan et al. 2007), analysis of relative extinction risks

among taxa (Calder 2000, Holmes et al. 2007), and

exploration of population cycling (Ginzburg and In-

chausti 1997, Tkadlec and Zejda 1998). However, the

estimation of population growth rate and its scaling with

body mass has been complicated by a lack of clarity

regarding alternative measures of population growth

rate. Here we focus on three metrics that can be

estimated using life-history data: r̃ (the per capita

population growth rate using empirically derived survi-

vorship for a population under field conditions), r̂ (the

per capita population growth rate assuming Type II

survivorship), and q (the per capita population growth

rate assuming Type I survivorship). The maximum

population growth rate for a laboratory or captive

population maintained under low-density, high-resource

conditions is a fourth metric we designate rmax. These

metrics have their origins in demographic theory and

empirical estimation using life table data (Caughley

1980), but they are frequently used in inappropriate

contexts without consideration of the assumptions

involved in their calculation. The Euler equation,

Z ‘

0

lðxÞmðxÞe�rxdx ¼ 1 ð1Þ

is frequently used to estimate r (which could be r̃, r̂, rmax,

or q) where l(x) is the survivorship to age x (i.e., the

proportion of individuals that survive to age x), and

m(x) is the per capita fecundity of female offspring at

age x (Roughgarden 1996, Kot 2001). Eq. 1 can be used

to estimate either r̃, r̂, rmax, or q, depending on what

functions are used for survivorship and fecundity (W. F.

Fagan, H. J. Lynch, and B. Noon, unpublished

manuscript). Because serious difficulties in interpretation

arise when alternative measures of population growth

rate are combined within a single comparative analysis

(e.g., Calder 2000), it is important to be terminologically

consistent (Slade and Balph 1974, Caughley 1980,

Hayssen 1984). Here we will use the generic symbol r

to represent that quantity that is estimated using the

Euler equation (and its various approximations), but we

will make clear whenever a particular estimate corre-

sponds to r̃, r̂, rmax, or q.
As metanalytic and ecoinformatic analyses continue

to proliferate, issues of data completeness and consis-

tency across species become paramount. Comparative

analyses of life-history data are no exception, because it

is often impossible to find complete survivorship and

fecundity schedules specific to each organism. To
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facilitate comparisons across a broad range of organ-

isms, Cole (1954:116) introduced a simplification to Eq.
1 that assumes that all animals in a population live to

‘‘some limit characteristic of the species.’’ This limit has

typically been taken to be the physiological maximum
life span recorded for animals in captivity (Cole 1954,

Hennemann 1983, Schmitz and Lavigne 1984, Robinson
and Redford 1986, Thompson 1987, Ross 1992). A

recently introduced alternative estimator assumes that

survivorship l(x) is given by an exponential, with a
constant mortality rate set by the mean life span (Pereira

and Daily 2006). Here we draw on a compiled data set of

mammalian survivorship curves from life table data for
58 species to examine the impact of these approxima-

tions for survivorship on the estimation of r and
subsequent allometric relationships linking r and body

mass. These data, which come exclusively from wild or

free-roaming feral populations, are available in Appen-
dix A. Future cross-taxa analyses of population growth

rates or allometric scaling will undoubtedly depend on
simplified survivorship models based on easily accessible

information regarding life-history characteristics. This

analysis explores the impacts of these assumptions on
estimates of r and subsequent allometric scaling and

serves as a caution against the use of inappropriate
survivorship models in cases for which data are limited.

METHODS

In his classic monograph, Cole (1954) focused on how

different assumptions about age-specific fecundity could
affect population growth rate, but he did not systemat-

ically examine the link between age-specific survivorship

and r. Instead, Cole’s approach was to assume that all
individuals in a population survive to a common

maximum age (denoted L) and then die (i.e., lx ¼ 1 for

all x , L and lx ¼ 0 for x � L). He also modeled
reproduction as occurring annually. With these assump-

tions, Eq. 1 simplifies to

e�q þ m̄e�qða 0Þ � m̄e�qðb 0þ1Þ ¼ 1 ð2Þ

where m̄ is the average number of female offspring

produced per female per year, a0 is the age of first
reproduction, and b0 is the age of last reproduction

(Cole 1954). In Eq. 2, we use the symbol q to explicitly

indicate which version of r is being estimated using this
approximation. The simplicity and minimal data re-

quirements of Cole’s approximation have made it
popular, even in analyses for which the original

assumptions are inappropriate. This is particularly true

among those seeking to understand allometric scaling
relationships between r and body size and/or metabolic

rate for cases in which the considerable cross-taxa data
requirements encourage the use of the simplest approx-

imation available (McLaren 1967, Hennemann 1983,

1984a, Schmitz and Lavigne 1984, Robinson and Red-
ford 1986, Thompson 1987, Ross 1992, Slade et al. 1998,

Duncan et al. 2007). Hennemann (1984a:365) declared

the ‘‘validity of the Cole method as a means of

estimating rm’’ on the basis of the similar allometric

slopes obtained by Fenchel (1974; using direct estimates

of r from laboratory populations), Blueweiss et al. (1978;

using estimates of maximum population growth rate in

the literature), and Hennemann (1983; using the Cole

approximation). Although Hayssen (1984) objected to

the application of Cole’s approximation to estimate

maximum population growth rate for many of the same

reasons we present here (see also the responses by

Hennemann [1984b] and McNab [1984]), no direct

comparison of estimation methods has been attempted.

More importantly, even if the Cole approximation

were appropriate to assess allometric scaling between r

and body size, it does not follow that the Cole

approximation can be used to provide unbiased estimates

of r itself. We return to this critical point in the

discussion. In this analysis, we explore the consequences

of using Cole’s approximation to estimate r, with

particular focus on his model of step function survivor-

ship. The impact of assuming that reproduction occurs

annually is also considered, although unless specifically

indicated, comparisons between different models will

hold fixed the reproductive schedule of litter size and

frequency appropriate to the organism being modeled.

Another simplified model of survivorship functions is

that mortality is constant with age, or, equivalently, that

the survivorship curve is given by an exponential. Pereira

and Daily (2006) substitute an exponential survivorship

model into the Euler equation (Eq. 1) to derive

m̃

Z ‘

0

X‘

y¼0

d x � yD� a 0ð Þe�ðr̂þlÞxdx ¼ 1 ð3Þ

where m̃ is the number of female offspring per litter, d is

the Dirac delta function, D is the interval between litters,

a0 is the minimum age of reproduction, r̂ denotes the

variant of population growth rate estimated by this

approximation, and l is the mortality rate. Note that this

model does not constrain reproduction to occur on an

annual basis but does assume constant fecundity.

Large comparative analyses of population growth

rates are often limited by a lack of species-specific life-

history information, and using simplified survivorship

curves based on a minimum of life-history parameters

offers clear advantages. Despite the popularity of

simplified survivorship schedules such as that used by

Cole (1954) and Pereira and Daily (2006), the impact of

these assumptions on estimations of r and resulting

allometric scaling relationships has not been examined.

To explore this link in a robust way, we develop a

generalized model of survivorship that provides excel-

lent fits to each of 58 mammalian survivorship schedules

we compiled while also including close approximations

to the two preceding survivorship models as special

cases. Specifically, we model survivorship as

‘ðxÞ ¼ 1� CDF½Betaðx=L; a; bÞ� ¼ 1� Iðx=L; a; bÞ ð4Þ

where CDF is the cumulative density function, a and b
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are the nonnegative shape parameters of the beta

distribution, and I(x/L; a, b) is the regularized

incomplete beta function (Abramowitz and Stegun

1972). The beta function has nonzero support only on

the interval [0, 1], and subsequently we scale x by the

maximum lifespan L for each species. Note the

interpretation of the beta distribution in this model; it

represents the probability of mortality from the birth of

a cohort to the death of its last member, which is by

definition bounded between 0 and L. Fitting survivor-

ship data is complicated by the lack of independence

between survivorship at different ages (Ricklefs and

Scheuerlein 2001, 2003), and here we estimate model

parameters using the nonlinear least squares fitting

procedure ‘‘nls’’ found in the statistical computing

environment R (R Development Core Team 2007).

The survivorship model in Eq. 4 is a function of both

survivorship shape (as controlled by the shape param-

eters a and b) and scale (L). This formulation is thus

comparable to the ‘‘stretched’’ beta distribution that has

seen use in other ecological contexts (Morris and Doak

2002, Calabrese and Fagan 2004). Models of survivor-

ship frequently employ either the Gompertz or the

Weibull distributions (Ricklefs 1998, 2000, Ricklefs and

Scheuerlein 2001, 2003), particularly where the goal is to

test theories of senescence for which these functions are

particularly well suited. The model of Eq. 4 has been

used in this analysis because it allows us to evaluate the

impact of varying survivorship curves on estimates of r

in a continuous shape space that contains as special

cases both the step function survivorship and the

exponential survivorship used in previous analyses of

population growth rates. The former in particular is not

easily incorporated into either the Gompertz or the

Weibull models since they model mortality as being a

continuous function of age. Strictly speaking, the step

function survivorship of Eq. 4 is represented by the limit

a ! ‘ and b ! 0, although we approximate this by (a,
b) ¼ (8, 0.0625) to reasonably mimic the step function

(see Fig. 1A) on a scale comparable with the parameter

values of the empirically fitted survivorship curves.

Pereira and Daily (2006) use an exponential survivorship

function truncated at five times the mean life span. As

seen in Fig. 1A, this is closely approximated by (a, b)¼
(0.80, 3.38). Note that, although the beta distribution

model used in this analysis was chosen as a convenient

tool to explore the impact of survivorship shape and

scale on r, the three-parameter (a, b, L) beta function

model (Eq. 4) outperforms, or is statistically indistin-

guishable from, the three-parameter Weibull model and

the two-parameter Gompertz model for 41 of the 58

species in this analysis (model comparisons quantified by

the Akaike Information Criteria; see Appendix B).

When needed for parameterization of Eqs. 2–3, we

obtained mammalian life-history data from the You-

THERIA (formerly PanTHERIA) database (Bielby et

al. 2007), the AnAge database (de Magalhaes et al. 2005,

AnAge 2007), and Nowak and Paradiso (1983). In cases

FIG. 1. Using the beta distribution to model mammalian
survivorship. (A) Exponential and step function survivorship
models (solid line) and their approximations (dashed line) using
the beta distribution survivorship (Eq. 4). (B) Gray lines
represent the beta function model (Eq. 4) that best fits the
empirical survivorship data for each of the 58 mammal species
in Appendix A. The exponential and the step function
survivorship curves are in black. (C) Location of organisms in
survivorship shape space as determined by fitting Eq. 4 to
empirical survivorship data for 58 mammal species (Appendix
A). The diameters of the circles are proportional to log10(mass).
The Cole step function survivorship shape (Cole 1954,
Hennemann 1983, Schmitz and Lavigne 1984, Robinson and
Redford 1986, Thompson 1987, Ross 1992) is indicated with a
gray square, and the exponential survivorship shape (Pereira
and Daily 2006) is indicated with a gray diamond. The shapes
are illustrated with line plots for all integer values of the beta
distribution shape parameters a and b (Eq. 4) in light gray, and
the line plot for (a¼ 8.0, b¼ 0.5) is in black. The large outlined
triangle represents that portion of shape space in which
empirical survivorship shapes fall. (D) Cross-sectional plots of
a (black circles) and b (gray squares) as a function of
log10(mass). The 95% CIs are indicated by the vertical error
bars.
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in which multiple sources of information were available

for a given species-specific parameter, we averaged the

values.

Estimation of allometric scaling coefficients

In our analysis of the allometric scaling relationship

between log10(r) and log10(mass), we used standardized

major axis (SMA) regression as opposed to the more

common ordinary least squares (OLS). As detailed by

Warton et al. (2006), SMA, in which the best-fit line

minimizes the total distance between the points and the

line, is more appropriate than OLS, in which the goal is

to summarize a relationship between two variables that

contain measurement error as opposed to the use of one

independent variable to predict a second dependent

variable. This is particularly important in cases in which

the goal is to compare the regression slope against a

theoretical prediction (Warton et al. 2006, O’Connor et

al. 2007). We calculated the allometric slope and its

confidence limits using the ‘‘smatr’’ package for R (R

Development Core Team 2007, Warton 2007). Note that

we do not consider a phylogenetic correction, because

our primary goal here is to compare the impact of

multiple survivorship models and reproductive schedules

across the same set of 58 species.

RESULTS

The influence of survivorship shape

and scale on estimates of r

The wide range of potential survivorship curves that

can be modeled by this formulation is illustrated in Fig.

1B, C. We fit Eq. 4 to published survivorship schedules

for 58 species (Fig. 1B and Appendix A) and have

indicated where these species fall in the two-dimensional

shape space of a and b (Fig. 1C, D and Appendix A).

Each point in Fig. 1C is indicated by a circle whose

diameter is proportional to the log10(mass). The special

cases of unity survivorship until death (Cole 1954) and

an exponential survivorship (Pereira and Daily 2006) are

also indicated. We see that survivorship shape varies

widely across different mammals but is contained in the

triangular area indicated in Fig. 1C. No clear trends in

shape space were apparent with regard to mammalian

body size (see also Fig. 1D). Although many animals do

exhibit roughly exponential survivorship (implicit in Eq.

3), none of the animals approach the more commonly

used Cole model of unity survivorship (implicit in Eq. 2).

To evaluate whether these differences in survivorship

shape are significant with respect to the estimation of r,

we model survivorship using Eq. 4 to investigate the

sensitivity of r to the details of the survivorship curve,

specifically the shape of the survivorship curve (Fig. 1C)

and the scale of the curve, which is related to the mean

life span of the organism. Fig. 2 illustrates this with two

examples, Taxidea taxus (North American badger) and

Sylvilagus floridanus (eastern cottontail), where the

original survivorship function used in the literature

(badger, Thompson 1987; cottontail, Pereira and Daily

2006) is contrasted with 1) a function having the same

shape but a scale that is drawn from empirical

survivorship data and 2) the beta distribution model fit

to the empirical survivorship data. Both shape and scale

play a role in accurately estimating r. It is important to

note that the cottontail was one of the species for which

Pereira and Daily (2006) did not have mean life span

data and one for which mean life span was estimated

using an allometric relationship between mortality and

body mass. This illustrates the difficulty of using

FIG. 2. Survivorship as a function of age for the different survivorship models for (A) the North American badger and (B) the
eastern cottontail. Each panel contrasts the survivorship curve used in the original published source with two alternatives. Solid
circles indicate the empirical survivorship data (see Appendix A).
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allometric relationships to estimate mean life span in

cases for which data are not available. More important-

ly, even when the actual mean life span is used, the

exponential model significantly overestimates survivor-

ship in the first six months, which, given that reproduc-

tion commences at three months, contributes to an

inflated estimate of r.

To investigate more thoroughly the role of shape and

scale, we use the life-history information for two species

(Peromyscus leucopus [white-footed mouse] and Equus

caballus [North American wild horse]), which together

represent the full range of survivorship shapes, and

examine the consequences for r if we modify shape and

scale for these two species over a continuous range that

encompasses most reasonable survivorship curves. Fig.

3A, B shows contour plots of estimated r for the mouse

and horse for a wide range of beta distribution shape

parameters. Note that here we have only changed the

shape of the survivorship curve and have fixed the

reproductive schedule at the interval appropriate for that

species. The step function approximation, the exponen-

tial approximation (Eq. 3), and the best-fit model using

the beta distribution (Eq. 4) are indicated on the contour

plot at the appropriate points in parameter space. Note

that here we wish to consider only the shape of the

survivorship curve and have fixed the mean life span as

one-fifth the maximum life span so as to replicate the

survivorship shape used in Pereira and Daily (2006) while

maintaining the same scale as the step function

approximation. Here the mean life span is generated

artificially from the empirically derived physiological

maximum life span, and the estimates of r thus derived

do not reflect directly on estimates that would have been

obtained by Pereira and Daily (2006). These analyses

demonstrate that r is highly sensitive to the shape of the

survivorship curve, and while the exponential shape

model can either inflate or deflate r, the step function

shape model always inflates r. The impact of using a step

function survivorship model on estimates of r is more

significant for the mouse than the horse due to the

mouse’s highly concave survivorship shape.

In addition to survivorship shape, r is also sensitive to

the scale of the survivorship curve, which is related to

the life span of the organism. Fig. 3C, D illustrates the

importance of scale for the mouse and the horse. Here

we have used all three survivorship models (the step

function approximation, the exponential approxima-

tion, and the best-fit beta distribution) to model

survivorship and have used the Euler equation (Eq. 1)

to calculate r, changing only the scale of the survivorship

function. In this analysis, r is relatively insensitive to the

scale of the survivorship curve for the step function

survivorship, but is sensitive to scale for the exponential

and beta distribution survivorship curves. This occurs

because changing the scale of the step function does not

change survivorship in the most important early years,

whereas the other two functions change everywhere as

longevity is extended.

The influence of reproductive schedule on estimates of r

In the above analysis, we held the reproductive

schedule of litter size and frequency fixed to explore
the influence of survivorship on estimates of r generated
by the Euler equation. The Cole approximation is

conditional on an additional assumption that reproduc-
tion occurs on an annual basis with reproductive output

equal to that of the annual average number of offspring.
As an example, consider the bank vole (Myodes

glareolus), which produces ;2.1 females/litter every 30
d starting at age 39 d. The Cole approximation would

estimate that 25.2 females are produced when reproduc-
tion commences at age 39 d, but in reality those

offspring are spread out over the entire year. The
exponential discounting of offspring born later in the

year is not properly accounted for, a particularly acute
issue when reproductive rates are high, as with the bank

vole and other small mammals. Relaxing the constraint
of annual reproduction reduces the estimate of r from

30.2 to 11.4. Therefore, accurately capturing the
reproductive schedule has a significant impact on the

estimation of r even though the step function model of
survivorship ensures that all of the females giving birth
at age 39 d will remain alive throughout the year. For

this reason, the remainder of our analysis and discussion
will contrast four models, the three survivorship models

(step function, exponential, and Eq. 4), in which the
reproductive schedule is fit to the empirical data, and the

Cole approximation, in which a step function survivor-
ship is used along with the constraint of strictly annual

reproduction. Note that throughout we have assumed a
fixed fecundity with age. The impact of changing

reproductive output with age, which was the focus of
Cole’s original paper (1954), is not considered here.

Allometric scaling for different models
of survivorship and reproduction

Although the different assumptions regarding survi-

vorship shape, survivorship scale, and reproductive
schedule together have a large impact on the absolute

value of estimated r, these assumptions make a much
smaller impact on the allometric scaling of r with body

size (Fig. 4 and Table 1). In Fig. 4A, we plot the r
estimates obtained by the Cole approximation (step
function survivorship with annual reproduction), step

function survivorship alone, and exponential survivor-
ship as functions of the r estimates obtained using the

beta distribution (Eq. 4). Ignoring small fluctuations, a
1:1 correspondence exists between the estimates of r

obtained by the exponential model of survivorship and
those obtained using the beta distribution fit (Fig. 4A).

Moving to a step function survivorship model leads to
inflated estimates of r, particularly for the largest r

values, and these estimates are even more significantly
inflated when the additional constraint of annual

reproduction is imposed, yielding biologically unrealistic
values. Therefore, it is surprising that in plots of log10(r)

against log10(mass) for the four different models (Fig.
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4B), the slopes of SMA regressions (Table 1 and inset to

Fig. 4B) have overlapping confidence intervals. Note,

however, that the exponential model of survivorship

(Type II) used by Pereira and Daily (2006) resulted in a

scaling coefficient that was more negative than that

produced by the step function model (Type I).

DISCUSSION

In this analysis, we highlight how different survivor-

ship and reproductive schedules impact the estimation of

r when the Euler equation is used. If considering the

potential for populations to grow under natural condi-

tions, it is important to use, whenever possible,

FIG. 3. (A, B) Influence of survivorship shape on the estimate of maximum population growth rate, r, for (A) the white-footed
mouse and (B) the wild horse showing the step function implicit in the Cole approximation, the exponential fit, and the beta
distribution fit to data. Each of these survivorship shapes is associated with a different combination of shape parameters a and b
and results in a different estimate of r. The position of these different curves and the associated r values are indicated by numbers (1,
the step function; 2, the exponential; and 3, the beta distribution) at the appropriate position in ‘‘shape space’’ defined by the beta
distribution shape parameters a and b (Eq. 4). The color scale of the plot has been truncated to preserve the contrast between the
areas of interest; r values for both species decrease precipitously in the upper left portion of the plot, and subsequently these areas
are not shown. (C, D) The saturation of r with maximum life span for (C) the white-footed mouse and (D) the wild horse. The three
curves for each species represent the impact of scale on each of the three survivorship models (dotted line, the step function implicit
in the Cole [1954] approximation; dashed line, the exponential survivorship used by Pereira and Daily [2006]; solid line, the beta
distribution model of Eq. 4 fit to the empirical life-history data). For the step function survivorship, the maximum age along the x-
axis is the age at which all animals die. For the exponential survivorship model, the maximum life span is five times the mean life
span as used by Pereira and Daily (2006). For the beta function fit, the maximum life span is the (empirically estimated) scaling
factor L in Eq. 4. Panel C inset: Plot of mean life span in the wild vs. maximum physiological life span ever recorded (Appendix A).
Maximum and minimum ratios of maximum physiological life span (years) to mean life span in the wild are indicated (27.2:1.0 and
2.0:1.0, respectively) with solid lines, and the linear regression fit to all the data points (10:3) is shown with the dashed line.
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survivorship data from wild populations to estimate r;

otherwise, the potential for population growth will be

overestimated. Even where detailed survivorship data are

unavailable, it is important to capture accurately the

shape and scale of survivorship. As illustrated in Figs. 1

and 4B, empirical survivorship shapes for mammals

show wide variability but are contained within a

triangular area in shape space in which the exponential

approximation (bounded by the interval [0, 5 3 mean

lifespan]) also falls. Although the Cole approximation of

a step function survivorship is convenient and commonly

used, we have demonstrated that the exponential model

of survivorship (which also requires only a single

parameter) is a much more realistic model for mamma-

lian survivorship when life-history information is limited.

In addition to survivorship shape, survivorship scale

must be chosen appropriately for accurate estimates of r.

As noted by Deevey (1947), and illustrated in the inset to

Fig. 3C, small animals live a smaller fraction of their

physiological maximum in the wild relative to large

animals. This fact is particularly important when

considering the results of those papers, like Hennemann

(1983) and Thompson (1987), that use the longest life

span ever recorded in captivity as the ‘‘potential mean

age of females producing their final young’’ (Thompson

1987:202). For small animals, the physiological life span

has little relationship to the actual maximum life span of

organisms in the wild, and r estimated using the

physiological life span will inflate r for wild populations.

The appropriate longevity for estimating r depends on

the context. For evaluating the maximum possible rate

of population growth (for example, to test allometric

scaling relationships as predicted by the metabolic

theory of ecology [Duncan et al. 2007]) it is most

appropriate to use a longevity that reflects the most

benign conditions possible, using data available from

captive populations. For understanding the rate at

which a real population in its natural environment

could grow, it is important to use a longevity suited to

populations experiencing mortality characteristic of

their environment, which will inevitably be significantly

shorter than for a similar captive population. Both

TABLE 1. Allometric scaling slopes (and upper and lower 95% confidence interval limits) of
log10(r) vs. log10(mass) for the species listed in Appendix A for four different models (see
Results).

Survivorship model Slope with bats Slope without bats

Step function (Type I) �0.34 (�0.40, �0.28) �0.39 (�0.45, �0.33)
Cole approximation� �0.39 (�0.47, �0.32) �0.44 (�0.52, �0.38)
Exponential (Type II) �0.48 (�0.60, �0.38) �0.55 (�0.69, �0.44)
Beta distribution (Eq. 4) �0.44 (�0.55, �0.35) �0.51 (�0.64, �0.42)

� Step function plus annual reproduction.

FIG. 4. (A) Estimates of maximum population growth rate, r, using the Cole (1954) approximation (solid circles), the step
function survivorship model (crosses), and the exponential survivorship model (open triangles) plotted as a function of the estimate
of r derived from fitting the beta distribution to the empirical data. The 1:1 line is in black, and the inset shows greater detail for small
values of r. (B) Scatterplot of log10(r) vs. log10(mass) for all 58 mammal species in the analysis for each of the four estimation
methods: the Cole (1954) approximation (solid circles), the step function survivorship model (crosses), the exponential survivorship
model (open triangles), and the beta distribution fit to the empirical data (gray stars). Points for the five bat species represented in the
sample are boxed. The slope of this plot represents the allometric scaling coefficient studied by other authors (Savage et al. 2004) and
used in the metabolic theory of ecology (Brown et al. 2004). The slopes, calculated for each of the four estimation methods using
reduced major axis regression as discussed in Methods, are shown in the inset, along with their 95% confidence intervals.
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shape and scale of the survivorship curve impact the

estimation of r when using the Euler equation.

For conservation-related applications, it is important

to consider the details of the organisms’ particular life-

history characteristics to estimate maximum population

growth rates accurately. The Cole approximation will

inflate under all circumstances the estimated maximum

population growth rates, and management scenarios

constructed using these inflated estimates will be

inappropriate and potentially harmful. It is absolutely

critical that when the interest is in the actual magnitude

of the estimate r (and not on the scaling of r with body

size), survivorship be modeled with a shape and scale

that is appropriate to the organism and its current

environment. Our results suggest that a ‘‘shortcut’’ of

sorts between mammalian life-history traits and popu-

lation growth rate does exist, but it is not the commonly

used one. When survivorship schedules are not avail-

able, the approximation of Pereira and Daily (2006)

should be used instead of that of Cole (1954).

Although the four survivorship models investigated

provide different estimates of r, they produce similar

allometric scaling relationships between r and body size

(Table 1). Across all 58 mammal species studied, the

slopes of log10(mass) vs. log10(r) (Table 1) yielded a

scaling relationship of �0.44 (�0.55, �0.35). However,

the small mammals fall into two distinct clusters. One of

these clusters contains all the bats studied (Fig. 4), which

feature much lower r estimates than would be predicted

by the overall trend (Fig. 4). If bats are excluded from

the analysis, the scaling coefficient for r (estimated from

the beta distribution model) drops to �0.51 (�0.64,
�0.42). Bats are well known to exhibit life-history

strategies (e.g., exceptionally long life spans, small litter

sizes) inconsistent with their small size when compared

to other mammals (Austad and Fischer 1991). Although

bats represent only five out of 58 species in our sample,

they have a profound influence on the allometric results,

and the results of other large mammal surveys are likely

to be influenced by the inclusion or exclusion of this

unusual group. Marsupials have also been singled out as

having life-history characteristics that differ from

eutherian mammals (Thompson 1987, Austad and

Fischer 1991, Fisher et al. 2001), although we did not

have sufficient survivorship information to include a

representative sample of marsupials in our study.

The meaning of the maximum reproductive rate

depends on the context of the analysis. Where survivor-

ship information is drawn from wild populations in their

natural environment, the maximum rate of population

growth estimated using the Euler equation will reflect

both the intrinsic reproductive capacity of the organism

and the particular details of the environment in which

the sample was taken. Because only the former is of

interest when drawing conclusions in a large compara-

tive study of scaling relationships, it is important to

exercise caution when using natural population data to

understand fundamental scaling relationships across

taxa. In our analysis, the allometric scaling relationship

linking r and body size was similar when using both the

empirical survivorship of natural populations and when

using the step function survivorship model, which has

been used by other authors as a context-independent

measure of reproductive potential. In this analysis, we

used the beta distribution model fit to empirical data as

a null model against which we compared various

alternative estimators of r. Estimates of true maximum

reproductive potential rmax (i.e., the maximum per

capita reproductive rate of a population under the most

benign conditions) would require extensive life-history

information from captive populations; such data are

currently unavailable for most mammals. In this

analysis, we have illustrated the impact of various

approximations that rely on less extensive data.

CONCLUSIONS

The estimation of maximum population growth rate

using the Euler equation depends sensitively on the

shape and scale of the survivorship curve l(x) and the

frequency of reproduction. We use a model of survivor-

ship based on a beta distribution of mortality to explore

the impact of different survivorship models on estimates

of r and subsequent allometric scaling of r with body

size. We find that the popular step function survivorship

model leads to estimates of r that are inflated,

particularly for high values of r. These estimates are

further inflated by the constraint of annual reproduction

that was used, along with the step function survivorship,

to derive the Cole approximation. In contrast, the

exponential model of survivorship, which also requires

only a single parameter (mean life span), provides an

unbiased estimate of r over the entire range of body sizes

sampled. Despite the impact of survivorship and

reproductive frequency on the absolute values of r, all

the models examined produced similar allometric scaling

relationships. For the r values estimated from the beta

distribution fits, the scaling relationship was �0.44 for

all mammals vs. �0.51 when considering only non-

volant mammals. Bats appear to violate many of the

mammalian allometric scaling relationships, and their

inclusion or exclusion from allometric scaling studies

can significantly impact results.
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APPENDIX A

Survivorship data for the 58 mammal species considered in survivorship analysis (Ecological Archives E090-072-A1).

APPENDIX B

Survivorship model comparison (Ecological Archives E090-072-A2).
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