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The quest to determine how cooperation evolves can be based on evolutionary game theory, in spite of the

fact that evolutionarily stable strategies (ESS) for most non-zero-sum games are not cooperative. We

analyse the evolution of cooperation for a family of evolutionary games involving shared costs and benefits

with a continuum of strategies from non-cooperation to total cooperation. This cost–benefit game allows

the cooperator to share in the benefit of a cooperative act, and the recipient to be burdened with a share

of the cooperator’s cost. The cost–benefit game encompasses the Prisoner’s Dilemma, Snowdrift game

and Partial Altruism. The models produce ESS solutions of total cooperation, partial cooperation, non-

cooperation and coexistence between cooperation and non-cooperation. Cooperation emerges from an

interplay between the nonlinearities in the cost and benefit functions. If benefits increase at a decelerating

rate and costs increase at an accelerating rate with the degree of cooperation, then the ESS has an

intermediate level of cooperation. The game also exhibits non-ESS points such as unstable minima,

convergent-stable minima and unstable maxima. The emergence of cooperative behaviour in this game

represents enlightened self-interest, whereas non-cooperative solutions illustrate the Tragedy of the

Commons. Games having either a stable maximum or a stable minimum have the property that small

changes in the incentive structure (model parameter values) or culture (starting frequencies of strategies)

result in correspondingly small changes in the degree of cooperation. Conversely, with unstable maxima or

unstable minima, small changes in the incentive structure or culture can result in a switch from non-

cooperation to total cooperation (and vice versa). These solutions identify when human or animal societies

have the potential for cooperation and whether cooperation is robust or fragile.

Keywords: Darwinian dynamics; cooperation; cost–benefit game; Snowdrift game; Prisoner’s Dilemma;

evolutionary game theory
1. INTRODUCTION
In evolutionary ecology, game theory reveals how coopera-

tive behaviours may emerge as adaptations, even

in situations where cheating is possible (Axelrod &

Hamilton 1981; Dugatkin 2006; Baalen & Jansen 2006).

In economics, game theory reveals the degree to which

individual stakeholders may willingly pay a cost that

provides a public benefit (Bilodeau & Gravel 2004). Two

advances in game theory permit us to shed novel and

general insights into the evolution of cooperation and the

willingness of individuals to provide public goods. The first

advance imbues familiar games of cooperation and

defection (such as the Prisoner’s Dilemma, Game of

Chicken and Tragedy of the Commons, which have

strategies of complete cooperation or total defection) with

costs and benefits that scale continuously with the

individual’s investment towards cooperation (Nowak &

Sigmund 2005). Rather than being all or none, cooperation

can represent a continuum of behaviours and the solutions

may include some degree of cooperation (Wahl & Nowak

1999). The second advance involves the use of fitness-

generating functions (G-functions) to represent, in a single

function, all of the pay-offs resulting from all of the possible

strategies and strategy combinations that may arise in a

game of cooperation involving a continuum of strategies

(Vincent & Brown 2005). Solutions to the game can then
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be investigated using both strategy dynamics and the

evolutionarily stable strategies (ESS) concept. We examine

two questions related to how strategies serve the individual

and how they provide incidental benefits to others. First, are

there convergent-stable strategies in an evolutionary sense?

Second, are there strategies or sets of strategies that are

resistant to invasion by rare alternative strategies? We refer

to a strategy that serves the individual as well as the group as

enlightened self-interest and the one that sacrifices group gains

for gains to the individual as a Tragedy of the Commons

(Hardin 1968). To address the above questions and

outcomes, we introduce a new cost–benefit game that

captures features of both enlightened self-interest and

Tragedy of the Commons. A strategy determines how

much cooperative effort an individual contributes. This

strategy may result in costs and benefits to the individual, as

well as to others. In its general form, the cost–benefit game

examines several important features of animal behaviour

related to altruism, cooperation, ecological engineering and

niche construction. Specific forms of the cost–benefit game

yield familiar games such as the Snowdrift game (Doebeli

et al. 2004) and Prisoner’s Dilemma as special cases.
2. G-FUNCTION
We start within the framework of a two-person symmetric

matrix game with two possible strategies: ‘cooperation’

and ‘non-cooperation’ as given in the pay-off matrix.
This journal is q 2008 The Royal Society



cooperation non-cooperation

cooperation (1Ca)bK(1Cb)c abKc
non-cooperation bKbc 0
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This is a cost–benefit game where if neither individual

cooperates, then there are no benefits and costs. However,

if one person cooperates, then there are both benefits and

costs distributed according to the matrix. A non-

cooperative focal individual versus a cooperative opponent

receives a benefit b from the opponent at a fraction

0%b%1 of the opponent’s cost c. A cooperating focal

individual versus a non-cooperating opponent pays the full

cost c and receives only a fraction 0%a%1 of the benefit b.

The terms a and b introduce and scale the degree of

‘selfishness’ in the game (West et al. 2007). If both the focal

individual and the opponent cooperate, then each receive

their own benefit plus a fraction of the opponent’s benefit

at their own cost plus a fraction of the opponent’s cost. To

ensure that this is a game of possible cooperation, we

require that ð1CaÞbKð1CbÞcZ bKbcð ÞC abKcð ÞO0.

It is easy to show that cooperation is a global ESS so

long as abKcO0 or aO(c/b), otherwise non-cooperation is

the global ESS. This game does not permit an ESS with a

mix of cooperators and non-cooperators. Interestingly, the

conditions for cooperation to evolve correspond with

Hamilton’s rule (Hamilton 1963; Queller 1985) where

the coefficient of relatedness must be greater than the

cost–benefit ratio, and with reciprocal altruism (Trivers

1971; Axelrod & Hamilton 1981; Brown et al. 1982)

where the coefficient of familiarity must be greater than

the cost–benefit ratio. As a general result, cooperation can

evolve if a sufficiently large fraction of the benefit is

rebounded onto the cooperator either through the public

good, non-random interactions (relatedness), or through

reciprocity (Brown 2001; Nowak 2006).

We use this cost–benefit matrix game as a guide to form

a continuous game of cooperation in which the individuals

are able to scale the level of cooperation between total

cooperation and total non-cooperation. Starting with the

linear form of the cost–benefit matrix game, we add a

nonlinear quadratic term to the benefits and costs. Let

0%ui%1 be a continuous variable describing the degree of

cooperation of individual i, where uiZ0 represents an

absence of any cooperation and u iZ1 represents a

maximal level of cooperation. Individuals within the

population are assumed to interact randomly in a pairwise

fashion resulting in linear/quadratic benefit and cost

functions. These assumptions lead us to the following

fitness-generating function or G-function (Vincent &

Brown 2005):

Gðv; u; pÞZ
Xns

jZ1

pj b2ðavCujÞ
2 Cb1ðavCujÞ

�

Kc2ðvCbujÞ
2K c1ðvCbujÞ

�
;

where v is a virtual variable, with the property that

replacing v by ui in G results in the fitness function for a

focal individual using the strategy ui. The vector of all ns

strategies in the population is given by uZ ½u1.uns
�, and

pZ ½p1.pns
� is the frequency vector of players using these

strategies. The fitness for an individual using strategy ui is
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its expected pay-off from playing pairwise against all

other players using strategies u j including jZi weighted

by the probability p j of playing someone with strategy u j.

The pay-off from an interaction has four terms. The two

terms with parameters b1 and b2 represent the benefits

bestowed from the interaction, and the two terms

preceded by c1 and c2 represent the costs of cooperation.

If the quadratic terms are removed (b2Z0 and c2Z0),

then the resulting linear G-function is a continuous

representation of the cost–benefit matrix game above.

A method for converting a matrix game into a continuous

game is given in Vincent & Brown (2005, ch. 9).

The level of cooperation by an individual’s opponent

using a strategy ujR0 always contributes a benefit to the

individual. We let the term 0%a%1 determine the degree

to which the individual derives any direct personal benefit

from its own degree of cooperation, av. Through b1O0,

benefits increase linearly with the level of each individual’s

cooperation. Through b2, benefits increase at either a

diminishing (b2!0) or an increasing (b2O0) rate with the

individuals’ levels of cooperation. If b2!0, there may be

some threshold value of v above which total benefits

actually decline with increasing v.

The level of cooperation by an individual, vO0, always

incurs a cost to the individual. We let the term 0%b%1

determine the degree to which the individual experiences

an additional cost from its opponent’s degree of

cooperation, buj . Thus, b introduces an externality by

which some of the cost of a cooperative act becomes public

and unavoidable to the recipient. Through c1O0 costs

increase linearly with the level of each individual’s

cooperation. Through c2, costs increase at either a

diminishing (c2!0) or an increasing (c2O0) rate with

the individuals’ levels of cooperation. If c2!0, there may

be some threshold value of v above which total costs

actually decline with increasing v.

While b2 and c2 can take on any value, they must remain

sufficiently large (not too negative) to ensure that the

benefits remain positive and the costs remain negative.

The following constraints must be satisfied:

c1O0

b1O0

BiðvÞ vZui
R0

��

CiðvÞ vZui
R0;

��

for iZ1, ., ns, where

BiðvÞjvZui
Z b2ðavCujÞ

2 Cb1ðavCujÞ

CiðvÞjvZui
Z c2ðvCbujÞ

2 Cc1ðvCbujÞ:

and jZ1, ., ns.

The parameters a and b determine the extent to which

the benefits are public and the costs are private. Setting

aZ1 and bZ0 results in the Snowdrift game presented

by Doebeli et al. (2004). This game involves two indivi-

duals clearing a road blocked by a snowdrift. Each

individual benefits equally from the digging effort, but

the cost to an individual depends only on one’s own level

of effort. In this formulation, the sum of the strategies of

the two interacting individuals represents the public good

and the strategy of the focal individual solely determines

the private cost.



Table 1. Necessary conditions for the four different types of
stability at an interior solution (S1Za2b2K c2 and
S2Z ð1CaÞab2K 1Cbð Þc2).

maximum minimum

convergent stable S1!0 S1O0
S2!0 S2!0

convergent unstable S1!0 S1O0
S2O0 S2O0
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Setting aZ0 and bZ0 results in a nonlinear variant of a

game of altruism (Killingback & Doebeli 2002). In this

case, there are no direct benefits to the focal individual

from cooperating, and the costs of cooperating are entirely

private. The structure of this game is similar to Prisoner’s

Dilemma in which an individual always benefits from the

cooperation of its partner, and the individual always avoids

costs by defecting. Therefore, while both individuals

would be better off if their opponent cooperated rather

than defected, each individual has defect (or uZ0) as a

dominating strategy. No matter what one’s opponent

does, one’s own best strategy is to play uZ0.

Setting aZ1 and bZ1 creates a game of complete

public benefits and costs. The benefits and costs to an

individual are simply the sum of each individual’s level of

cooperation. It is this sum of cooperative behaviours that

matters, not the source of the cooperative acts. Similarly,

the costs of cooperation represent a complete externality.

Both individuals experience the same costs regardless of

which partner instigated the costs via some level of

cooperative behaviour.

Setting aZ0 and bZ1 represents a fourth possible

combination of public versus private costs and benefits.

This represents a costlier form of altruism in which an

individual contributes a benefit to its partner and also

imposes a public cost to oneself and the opponent.

When bZ0, an individual would like an opponent to be

as cooperative as possible. With bZ1, there may be limits

to the level of cooperation one desires from their

opponent. The maximum pay-off to an opponent may

occur at an intermediate level of cooperation from the

cooperating individual. However, the strategy of uZ0 still

represents a dominating strategy.

All of these four games can be extended by allowing a

and/or b to take on values between 0 and 1. As a last

specific example, we will consider the case of aZbZ0.5.

There is a public element to benefits and costs, but being

cooperative still costs the cooperator more than the

recipient, and the individual garners a smaller benefit

from cooperating than the recipient.
3. CHARACTERIZING THE ESS
Maynard Smith’s (Maynard-Smith & Price 1973;

Maynard-Smith 1982) original ESS definition only

required that a strategy, when common, be resistant to

invasion by rare alternative strategies. Such a strategy need

not be convergent stability and achievable through

strategy dynamics. A small perturbation in mean strategy

value or strategy frequency may not return an evolving

system back to the unperturbed state. Likewise, a strategy

that only provides convergence stability may not be resis-

tant to invasion by rare alternative strategies. While the

literature differs over whether Maynard Smith’s original

ESS definition should remain unchanged, we have

proposed using an updated ESS definition (Vincent &

Brown 1988) that requires both resistance to invasion and

convergence stability (Cohen et al. 1999). This conforms

to the definition and concept of a continuously stable

strategy (CSS; Eshel 1983, 1996).

Applying these dual conditions, we examine the

features of an interior, single-strategy (coalition of one)

ESS for the games presented in this paper. To be resistant

to invasion, the strategy u�
1 must reside on a peak of the
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adaptive landscape (when p�Z1, vZu1) by satisfying the

following necessary conditions:

vGðv;u�
1 ;p

�Þ

vv vZu�
1

Z2u1½ab2ð1CaÞ

����

Kc2ð1CbÞ�Cðab1Kc1ÞZ0; ð3:1Þ

v2Gðv;u�
1 ;p

�Þ

vv2 vZu�
1

Z2a2b2K2c2!0:

���� ð3:2Þ

A necessary condition for the convergence stability of u1

with p�Z1 is given by1

v2Gðv;u1;p
�Þ

vv2
C

v2Gðv;u1;p
�Þ

vu1 vv

����
vZu1

Z2a2b2K2c2C2ab2K2bc2!0: ð3:3Þ

The candidate for an interior solution is found by

solving for u1 from equation (3.1),

u1 Z
c1Kab1

2½ab2ð1CaÞKc2ð1CbÞ�
; ð3:4Þ

provided that

ab2ð1CaÞKc2ð1CbÞs0

and that 1Ou1O0. From equation (3.4), it follows that a

positive interior solution requires

c1Oab1 and

ab2ð1CaÞOc2ð1CbÞ0ab2Kbc2Oc2Ka2b2;

or

c1!ab1 and

ab2ð1CaÞ!c2ð1CbÞ0ab2Kbc2!c2Ka2b2:

From equation (3.2), this point is resistant to invasion

(takes on a maximum) provided

a2b2!c2: ð3:5Þ

From equation (3.3), the strategy dynamics is convergent

stable provided

ab2ð1CaÞ!c2ð1CbÞ: ð3:6Þ

Reversing the inequalities in equations (3.5) and (3.6)

provides sufficient conditions for the solution to be at a

minimum point and for the solution to be unstable with

respect to strategy dynamics. There are four possible

outcomes for the strategy dynamics: convergent-stable

minimum; convergent-stable maximum; unstable mini-

mum; or unstable maximum. (We refer to minima or

maxima that are not convergent stable as ‘unstable’.)

These outcomes are summarized in table 1.
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Figure 1. Nonlinearities in the cost and benefit functions affect the convergence stability and resistance to invasion of a candidate
solution to the cost–benefit game. In (a,b), the x -axis lies on CiðvÞ vZui

Z0
�� and the y-axis lies on BiðvÞ vZui

Z0
�� . Thus, each of

these functions is positive in the regions shown, satisfying the conditions that benefits are positive and costs are negative. For a
given b2 and c2, a candidate solution is given by equation (3.4). The line with circles (S1Z0) separates the space into regions
where the candidate solution for u1 is either a maximum (S1!0) or a minimum (S1O0) on its adaptive landscape. The line with
stars (S2Z0) separates the space into regions where the candidate solution for u1 is either convergent stable (S2!0) or
convergent unstable (S2O0). Arrows indicate the direction that values for S1 or S2 are positive. The solid line indicates the values
for b2 and c2 that will generate a candidate solution of u1Z0.6 when (i) b1Z6 and c1Z4 or (ii) b1Z2 and c1Z4. Moving from
lower left to upper right along the candidate solution curve u1Z0.6 in (a), the solution shifts from being a convergent-stable
minimum (not an ESS) to a convergent-stable maximum (an ESS). Moving from lower left to upper right along the candidate
solution curve u1Z0.6 in (b), the solution shifts from being an unstable minimum to an unstable maximum (neither are an ESS).

1988 J. S. Brown & T. L. Vincent Evolution of cooperation
4. APPLICATIONS
We use Darwinian dynamics to investigate three cases.

The Darwinian dynamics in terms of G-functions are

given by

_pi Z pi Gðv;u;pÞjvZui
KG

� �

_ui Z s2vGðv;u;pÞ

vv

����
vZui

where

GZ
Xns

iZ1

piGðv;u;pÞjvZui
;

ns is the number of players, and s2 is a variance term

associated with the spread of strategies about the mean

strategies used by each of the population of players. These

dynamics produce analogous changes in strategy values as

the adaptive dynamics used by Doebeli & Hauert (2005)

in their analysis of the continuous Snowdrift game with

quadratic pay-offs. Cressman & Hofbauer (2005) used

replicator dynamics to model the convergence stability of

models with quadratic pay-offs. With interior solutions of

0!u!1, they obtained the same results for evolutionary

convergence as the Darwinian dynamics above.

(a) Case 1. Snowdrift game (aZ1 and bZ0 ) and

Partial Altruism (aZ0.5 and bZ0.5 )

The Snowdrift game and the game of Partial Altruism

can produce an interior candidate for a single-strategy ESS

that exhibits all the four arrangements shown in table 1. In

the Snowdrift game, the benefits are public (both the

cooperator and the partner benefit equally from an

individual’s cooperation), but the costs are private. This

game analysed in Doebeli et al. (2004) did not analytically
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solve for an ESS. Here, we examine all of the possible

stability outcomes identified in table 1 by letting aZ1 and

bZ0. In this case,

S1 Z b2K c2;

S2 Z2b2K c2;

BiðvÞjvZuj
Z b2ðvCuiÞ

2 Cb1ðvCuiÞ;

CðvÞjvZuj
Z c2v

2 Cc1v

with an interior solution given by

u1 Z
c1K b1

4b2K2c2

: ð4:1Þ

Only three of the four outcomes were identified in

Doebeli et al. (2004). The fourth outcome is obtained by

using the G-function to identify points that are maxima

but not convergent stable.

The parameters governing the cost and benefit

structure influence the outcome. In general, one must

consider all the combinations of parameter values that

satisfy S1 (determines invasibility), S2 (determines con-

vergent stability) and the constraints Bi and C. Figure 1

illustrates how these constraints divide the parameter

space into different stability regions.

When the candidate solution is a convergent-stable

maximum, there is just one global outcome to the game as

illustrated in figure 2 (see also fig. 1b in Doebeli et al.

(2004). The candidate solution is an ESS and Darwinian

dynamics, starting with any number of initial strategies,

will result in this ESS. This solution produces an

intermediate level of cooperation manifested in all of the

individuals. It is a ‘glass half-full half-empty’ sort of

world. An observer could note success for enlightened
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Figure 2. Depicted are the strategy dynamics and resulting ESS for a convergent-stable maximum for the Snowdrift game.
(a) Starting with two very similar strategies (u1Z0.1 and u2Z0.101), the two strategies evolve in tandem and converge on the
same value of u1Z0.6 and u2Z0.6. (b) Both strategies evolve towards the same maximum on the adaptive landscape. The
strategy of 0.6 is an ESS, but collective fitness is not maximized at the ESS. We used b1Z7, b2ZK1.5, c1Z4.6 and c2ZK1 as in
Doebeli et al. (2004). (i) tZ0, (ii) tZ2, (iii) tZ4, (iv) tZ6, (v) tZ8 and (vi) tZ20.
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self-interest as each individual contributes some public

goods from its selfish pursuits. Or, the observer could note

elements from the Tragedy of the Commons as the game

fails to produce a level of cooperation that would maximize

both players’ combined pay-offs.

At this ESS, by being less cooperative, one gives up

more in public benefits than one gains through lower

costs, and by being more cooperative one pays more in

additional costs than one gains in greater benefits.

If equation (4.1) results in a convergent-stable

maximum at a value of u greater than 1 or less than 0,

then the actual ESS is either total cooperation (u1Z1) or

non-cooperation (u1Z0), respectively (see fig. 1d,e in

Doebeli et al. 2004). Darwinian dynamics will drive the

solution to the ESS regardless of initial conditions. In

summary, depending upon parameter values, a conver-

gent-stable maximum will result in a single-strategy ESS

with strategy values between 0 and 1.

If equation (4.1) results in a convergent-stable

minimum, then the candidate solution is not an ESS.

With just a single strategy, evolution will drive the system

to a minimum of the adaptive landscape. This is an

evolutionary branching point (Geritz et al. 1998), and the

addition of another strategy, no matter how close to the

first, will result in Darwinian dynamics to an ESS that has

the coexistence of two distinct strategies. This outcome

illustrated in figure 3 (see also fig. 1a in Doebeli et al.

2004) produces a world in which cooperators and non-

cooperators both coexist. The cooperators produce

public goods and the non-cooperators freeload on

these public goods. The average level of cooperation in

the population has similarities to the single-strategy ESS

solution, but now an intermediate level of cooperation

results from a mix of personality types. This solution and

the game that produces it represent a form of the

Producer–Scrounger game (Giraldeauand & Caraco
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2000) in which some individuals produce a resource that

cannot be completely defended and scroungers steal these

resources from the producers.

At the ESS, both strategies experience the same pay-

off, but each strategy achieves its pay-off through a

different balance of costs and benefits. Those using

u1Z1 enjoy greater average benefits but pay greater

costs than those using u2Z0. Everyone would be better

off if everyone cooperated, but such a group optimum is

neither convergent stable nor resistant to invasion.

If equation (4.1) results in an evolutionarily unstable

minimum, then it is not an ESS. In fact, this configuration

of the game does not have a unique outcome (figure 4).

Depending upon the parameters, the ESS of the game

may be either total cooperation, total non-cooperation or a

mix of cooperators and non-cooperators. A fixed set of

parameters produces just one ESS. However, Darwinian

dynamics may not necessarily drive the system to its ESS.

For instance, when the ESS is an entire population of total

cooperators, strategy dynamics do not necessarily result in

this ESS. The strategy of uZ0 represents a local maximum

of the adaptive landscape, with a valley separating it from

the cooperative strategies that would yield higher fitness.

The ESS of cooperation cannot evolve continuously from

total non-cooperation, and the only way for cooperation to

become established is with the introduction of a small

fraction of individuals with a sufficiently high level of

existing cooperation. When non-cooperation is the ESS,

then the reverse situation happens with regard to total

cooperation being a local maximum of the adaptive

landscape, but not an ESS. At this local maximum, there

are distant strategies that can invade the resident strategy.

When the ESS represents a mix of cooperators and non-

cooperators, either extreme strategy represents a local

maximum of the adaptive landscapes and Darwinian

dynamics may not be able to achieve the ESS (figure 4).
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Figure 3. Depicted are the strategy dynamics and resulting ESS for a convergent-stable minimum for the Snowdrift game.
(a) Starting with two very similar strategies (u1Z0.1 and u2Z0.101), the strategies evolve in tandem towards the convergent-
stable minimum of 0.6, at which point the two strategies diverge and evolve to their ESS values of u1Z0 and u2Z1. The
frequencies of the two strategies stay very close to their starting values of 0.5, with changes manifest only after the two strategies
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the strategies first evolve towards the minimum and then diverge to the ESS. Near the convergent-stable minimum, a valley
appears to the left of the strategies and then moves under and between the two strategies. With respect to collective pay-offs, the
strategy u1Z0 is at minimum fitness and the strategy u2Z1 is at maximum fitness. We used b1Z6, b2ZK1.4, c1Z4.56 and
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Figure 4. Depicted are the strategy dynamics and resulting ESS for an unstable minimum in the Snowdrift game. (a) Starting
with two strategies (u1Z0.5 and u2Z0.7), the strategies immediately diverge from the unstable minimum of 0.6 Unlike the
convergent-stable minimum (figure 3), the strategies do not initially evolve to the critical value of 0.6. Similar to the convergent-
stable minimum, the strategies diverge and evolve to their ESS values of u1Z0 and u2Z1. Note, had the initial strategies been at
u1Z0.1 and u2Z0.101, they both would have evolved to uZ0, a non-ESS local maximum of the adaptive landscape. In fact, any
two starting strategies that are to the left (or right) of u1Z0.6 will evolve to the non-ESS solution of uZ0 (or uZ1). Compare
this result with the convergent-stable minimum case, where the two strategies can have very similar values and still evolve to the
ESS, whereas for the unstable minimum the initial strategy values must be sufficiently different for the two strategies to evolve to
the ESS. (b) By starting the strategy values on either side of the unstable minimum, the adaptive landscape begins with a valley
between the two strategies, which allows them to evolve towards the ESS. For this unstable minimum case, we used b1Z3.4,
b2ZK0.5, c1Z4 and c2ZK1.5 as in Doebeli et al. (2004). (i) tZ0, (ii) tZ3, (iii) tZ6, (iv) tZ10, (v) tZ15 and (vi) tZ40.
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Figure 5. The Snowdrift game with an unstable maximum has two ESS configurations represented by non-cooperation or
complete cooperation. (a) By starting with two strategies (u1Z0.3 and u2Z0.7) at values averaging less than the unstable
maximum of 0.6, strategy dynamics result in convergent evolution along the adaptive landscape to the ESS of u1Zu2Z0.
Collective fitness is minimized at this ESS of non-cooperation. (b) By starting with two strategies (u1Z0.5 and u2Z0.8) at
values averaging greater than the unstable maximum, strategy dynamics result in convergent evolution towards the alternative
ESS of u1Zu2Z1. At this ESS, collective fitness is maximized. For the unstable maximum, we used b1Z2.8, b2Z2, c1Z4 and
c2Z3. One might wonder about the case of starting values that have an average equal to 0.6. In this case, evolution will drive both
strategies to uZ0.6; however, this solution is unstable. The slightest change in one of the strategies at this point will result in the
system further evolving to one boundary or the other. (i) tZ0, (ii) tZ2, (iii) tZ4, (iv) tZ6, (v) tZ8 and (vi) tZ50.
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An unstable minimum produces a much richer array

of outcomes with respect to cooperation and non-

cooperation. The outcome will always involve total

cooperation or total non-cooperation. Such worlds will

always represent maxima on the adaptive landscape, but

they may not be an ESS. Sometimes, the ESS represents a

mix of total cooperators and/or total non-cooperators that

has properties identical to the ESS of the convergent-

stable minimum (see fig. 1c in Doebeli et al. 2004).

Starting the system with two arbitrary strategies does

not necessarily result in the evolution to the ESS. If both

strategy values are sufficiently large, then the Darwinian

dynamics result in u1Zu2Z1 and vice versa for starting

values sufficiently low. Hence, when there is an

intermediate value of cooperation that results in an

unstable minimum, both total cooperation and total

non-cooperation become local, convergent-stable max-

ima. These solutions are convergent stable but not

resistant to invasion. Getting out of these local maxima is

harder than getting out of a convergent-stable minimum

(Cohen et al. 1999). In terms of strategies, the local

maximum is locally, but not globally, resistant to

invasion. The actual ESS contains a mix of strategies.

If the starting conditions include strategies on either side

of the unstable minimum, then strategy dynamics

achieve the ESS. Even if the strategies start close to

but to one side of the minimum, the ESS coalition of the

two emerges from the dynamics. Thus, there is a

bounded domain of attraction for the ESS in the

neighbourhood of the minimum.

If equation (4.1) results in an unstable maximum, then

the candidate solution is not an ESS. The ESS always
Proc. R. Soc. B (2008)
involves alternate stable states in which the total

cooperation is an ESS, and the total non-cooperation is

an ESS (figure 5). This requires that each ESS be local with

respect to starting conditions. The candidate represents a

knife edge. If the system starts at the candidate solution,

then it will remain there and no alternative strategies can

invade. If perturbed to one side or the other with respect to

the strategy value, then the Darwinian dynamics will carry

the system to an ESS state of total cooperation or non-

cooperation. To an observer, the cooperative ESS would be

seen as a triumph of enlightened self-interest, and the non-

cooperative ESS would be a total Tragedyof the Commons.

To shift the population from one of these solutions to

another requires a major perturbation of strategy values

and frequencies.

Each ESS has its own domain of attraction. Whether

the strategy evolves to a point of total non-cooperation or

to the total cooperation solution depends upon the initial

conditions.

Under Partial Altruism (aZ0.5 and bZ0.5), the

critical values for determining invasion resistance and

convergence stability reduce to

S1 Z0:25b2K c2;

S2 Z0:75b2 K1:5c2

with an interior candidate solution of

u1 Z
c1K0:5b1

1:5c2K3c2

:

Depending upon parameter values, these conditions can

produce all of the same cases as the Snowdrift game.



bZ0 bZ1

aZ0 unstable minimum unstable minimum
aZ1 stable maximum, unstable

maximum, stable
minimum, unstable
minimum

stable maximum,
unstable
minimum
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(b) Case 2. Prisoner’s Dilemma (aZbZ0 )

and Prisoner’s Dilemma with public costs

(aZ0 and bZ1 )

Both forms of the Prisoner’s Dilemma result in an ESS of

total non-cooperation, uZ0. This is to be expected. Of

interest is the nature of any non-ESS solutions that involve

some level of cooperation. Such solutions might permit

Darwinian dynamics to produce outcomes other than the

ESS of uZ0. When aZbZ0, the stability conditions are

given by

S1 ZKc2;

S2 ZKc2

with the solution for u1 given by

u1 ZK
c1

2c2

:

The Prisoner’s Dilemma with public costs, aZ0 and

bZ1, has similar stability conditions

S1 ZKc2;

S2 ZK2c2

with an interior solution of

u1 ZK
c1

4c2

:

For the Prisoner’s Dilemma and the Prisoner’s

Dilemma with public costs, we obtain a convergent-stable

maximum with c2O0. With c2!0 there is an unstable

minimum. But, an interior solution of uO0 requires that

c1 and c2 be of opposite sign. Hence, if there is an interior

solution it must always be an unstable minimum. With a

single strategy starting greater than this minimum,

Darwinian dynamics drives the solution to uZ1; however,

this is not an ESS solution. This solution cannot be

invaded by neighbouring strategies but can be invaded by

other strategies (e.g. uZ0). With starting strategies less

than the minimum, Darwinian dynamics produce the ESS

of non-cooperation, uZ0.

The Prisoner’s Dilemma permits just one ESS solution,

u1Z0. It can, however, produce a non-ESS convergent-

stable maximum of total cooperation depending upon the

parameters and the initial conditions.
(c) Case 3. Cooperation under public costs

and benefits (aZbZ1 )

When costs and benefits are completely public, aZ1 and

bZ1 there are three possible ESS solutions of total

non-cooperation, total cooperation or an intermediate

level of cooperation.

The stability parameters are given by

S1 Z b2K c2;

S2 Z2b2K2c2

with the interior solution of

u1 Z
c1K b1

4ðb2K c2Þ
:

The stability conditions are either both positive (unstable

minimum) or both negative (convergent-stable maxi-

mum). A wide range of parameter values can produce a

convergent-stable maximum with an intermediate level of

cooperation. This strategy is also the ESS. Also, with a
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convergent-stable maximum of u0!1 the ESS will be

u1Z0, or with u1O1 the ESS will be u1Z1. A wide range

of parameter values can also produce an unstable

minimum with an intermediate level of cooperation.

Darwinian dynamics will drive the population to either

complete cooperation or non-cooperation depending on

which side of the minimum the population’s strategy

begins. Only one of these outcomes will actually be the

ESS. The other extreme solution, such as the Prisoner’s

Dilemma, will be a local maximum only. This strategy can

result from Darwinian dynamics, but the strategy can be

invaded by strategies with levels of cooperation sufficiently

distant from the local maximum.
5. DISCUSSION
Four types of interior solutions become possible for most

evolutionary games based on whether a strategy is

convergent stable or unstable, and whether the strategy

is at a minimum or maximum of the adaptive landscape.
For the cost–benefit game, the possible types of solutions

depend strongly on the extent to which the cooperator

shares in the benefits (a) and the opponent shares in the

costs (b). For the extreme values of a and b, these are the

possible types of outcomes for solutions of 0!u!1.

Also, when altruism is partial with aZ0.5 and bZ0.5

all the four types of interior solutions are possible.

The property of directly benefiting from one’s

cooperative act determines whether an intermediate level

of cooperation can be an ESS. If there is no direct benefit,

aZ0 then complete non-cooperation is the global ESS.

But, being the global ESS does not mean that total non-

cooperation will evolve from Darwinian dynamics. If the

strategy of the population begins with a degree of

cooperation greater than the value at the unstable

minimum, then complete cooperation can result even

though the solution represents only a local maximum on

the adaptive landscape, and individuals with sufficiently

low levels of cooperation can invade.

When both benefits and costs are completely public

(aZ1 and bZ1), the model results in a single, global ESS.

Depending upon the parameter values, this ESS can take

on any value between total non-cooperation and total

cooperation. Furthermore, the ESS will be achieved by

Darwinian dynamics independent of the starting

conditions.

The fullest range of outcomes and ESS solutions occurs

when the benefits are partially or wholly public (0!a%1),

and the costs are not (0%b!1). With a stable minimum,

the ESS contains the coexistence of total cooperators with

total non-cooperators. Darwinian dynamics with a single

starting strategy will evolve to the stable minimum at

which point adaptive speciation or the invasion of another

strategy permits evolution to the ESS. Both decreasing
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returns to benefits and costs from increasing cooperation

favour this outcome. The outcome is independent of

initial conditions and small changes in parameter values

will simply cause small changes in the frequency of

cooperators and non-cooperators at the ESS and the

position of the convergent-stable minimum.

With a convergent-stable maximum, there may be a

global ESS, achievable by Darwinian dynamics at some

intermediate level of cooperation. An ESS with an interior

level of cooperation occurs when there are diminishing

returns to benefits and increasing returns to costs. The

outcome is independent of initial conditions and small

changes in parameter values will cause correspondingly

small changes in the level of cooperation at the ESS.

The unstable minimum and the unstable maximum

permit both total non-cooperation and total cooperation

to be a local ESS. Increasing returns to both costs and

benefits favours an unstable maximum, and decreasing

returns to both costs and benefits favours an unstable

maximum. As alternative stable states, which ESS results

from Darwinian dynamics depends upon the starting

conditions. These scenarios under Darwinian dyna-

mics can also result in total non-cooperation or total

cooperation as a local maximum of the adaptive lands-

cape. This arrangement allows for shifts from total non-

cooperation to total cooperation with small changes in the

parameter values and/or initial starting conditions.

(a) Incentive structures

The degree to which individuals benefit from their own

cooperative acts or can foist some of the cost onto the

recipient represents the incentive structure for motivating

cooperation among individuals. In economics, this can

come about through social contracts or government

intervention where cooperative acts may be subsidized or

recipients may be taxed or pay user fees for the public

good. In ecology, this generally comes about from forms of

ecological engineering (Jones et al. 1997) where an

organism modifies its environment to make it more

favourable, such as dam building by beavers, nest

construction by woodpeckers that nest in tree cavities or

the extensive burrow constructions of aardvarks.

Failure to see higher levels of cooperative behaviour can

result from the incentive structure itself or from too high a

frequency of non-cooperative individuals. The incentive

structure represents the rules of the game itself, and the

degree of cooperation among residents of the population

represents a kind of culture. If the cost–benefit game has

an ESS with an intermediate level of cooperation (stable

maximum) or if the ESS has a mixture of totally

cooperative and totally non-cooperative individuals

(stable minimum), then small changes in the incentive

structure will cause small changes in the degree of

cooperation or the frequency of extreme cooperators,

respectively. Altering the ‘culture’ by externally changing

the initial degree of cooperation within the population

will have no effect on the value of the ESS or on achieving

the ESS through strategy dynamics. In a sense, these

solutions are robust to incentive structure and culture.

On the other hand, when the incentive structure

promotes an interior solution that is either an unstable

maximum or an unstable minimum, then there are

alternative stable states of either total cooperation or

total non-cooperation. One of these strategies or both of
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them may represent the ESS of the system, but when total

non-cooperation is not the ESS it is still a stable maximum

that cannot be invaded by total cooperation. Seemingly

small changes in the incentive structure can swing the

system from total cooperation to total non-cooperation or

vice versa. When humans or animal societies show drastic

changes in the degree of cooperation (or aggression), it

may suggest the existence of unstable maximum or

unstable minimum within their social game.
(b) Conclusion

A matrix game form of the Prisoner’s Dilemma (aZ1 and

bZ0 in the cost–benefit matrix game of this paper)

provided a starting point for using game theory to examine

the evolution of cooperation (Axelrod & Hamilton 1981;

Brown et al. 1982). It is a game of unmitigated altruism.

The altruist bestows a benefit and incurs a cost with no

direct benefit to self, and the opponent receives the benefit

at no cost to self. Cooperation can evolve in this game

provided non-random interactions are introduced or it is

played as an iterative game. Non-random interactions

permit kin selection where like-minded strategies are more

likely to interact with each other than by chance alone.

Iterative games permit reciprocal altruism where individ-

uals can learn to recognize, reward and punish others

based on the strategies revealed by these individuals

during previous plays of the game (Fletcher & Zwick

2006; Nowak 2006; Kummerli et al. 2007). In our cost–

benefit matrix game, cooperation can also evolve so long

as a sufficiently large fraction of the benefit is ‘public’ and

directly enjoyed by the cooperator as well.
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ENDNOTE
1More comprehensive conditions for convergent stability that

requires stability of both u1 and p are available (Cohen et al. 1999)

but are too cumbersome for ease of use.
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