Conflict Resolution

- Threat signal design rules
- Threat-display contests – Hawk-dove-assessor
- Variable length contests
 - War-of-attrition
 - Sequential assessment
- Variable sequence contests
- Read pp 598-602, ch. 21

Signal design rules

- Signal range
- Locatability
- Duty cycle
- Identification level
 - Requires variation between classes
- Modulation potential
 - May encode motivation, aggressiveness, health, danger
- Form-content linkage
 - Signal form depends on signal content in an arbitrary or linked way

Threat signal design rules

Table 18.5	Design rules and	Design rules and modality-specific mechanisms for threat signals					
Design feature	Rule	Visual mechanisms	Auditory mechanisms	Olfactory mechanisms			
Range	Short	Posture Movement display	Soft broadband growl Loud scream	Volatile, rapid fadeout chemical			
Locat- ability	Intended receiver (rival)	Directional display or posture	Beam sound Countersinging	Directed flow Add visual component			
Duty cycle	High for contest duration, Short signals	Series of single short displays	Series of single short calls Longer single growl	Single puff			
ID level	Rival class: Age, body size, status	Maturational color change Broadside display Badge	Frequency shift with age or body size Intensity	Chemical derived from maturation hormone			
Modula- tion level	Graded	Variable position or display form Choice of display	Frequency Intensity Repetition rate	Poor			
Form- content linkage	Linked	Attack or retreat intentions Body size amplifier	Lowest possible frequency Wide bandwidth	Testosterone- derived chemical			

Conflict displays often involve intention movements

Correlated asymmetry

- Opponents differ in size or other measure of RHP
- Example: hawk dove assessor
 - Assessor strategy: if larger play hawk, if smaller play dove
 - Assume 50% population is larger, 50% smaller than actor

Op	ponent:	Hawk	Dove	Assessor
Actor:	Hawk	(V-C)/2	V	(V-C)/2
	Dove	0	V/2	V/4
	Assessor	V/2	3V/4	V/2

When there is a cost to fighting, Assessor is pure ESS assuming that assessment is cost free and accurate

Assess and bluff by mantis shrimp

Threat display. Newly molted animals can be severely injured. Up to 20% of animals on a reef are vulnerable.

Responses of newly molted residents (R)^{B)} & intruders (I):

Dark-flee Grey-display Open-do nothing

War of attrition - the waiting game

- Assumptions
 - Resource cannot be shared
 - Cost of display increases with length of contest
 - No information is received during contest and opponents are symmetrical
 - Each contestant makes a "sealed bid" for how long they are willing to persist
 - Winner will be the contestant willing to persist longer and accept the higher cost
 - The cost to both contestants equals the cost acceptable to the loser

War of attrition - Payoff matrix

x_i = amount of time individual i displays
k = rate at which costs are expended
V = value of resource

No pure ESS is possible, since an opponent that displayed a little bit longer would have higher fitness Solution is a mixed ESS where the probability of leaving at any time is a constant. The times an individual stays should be distributed as a negative exponential, more short than long.

Asymmetric war-of-attrition

- If animals experience different costs of display or the resource differs in value to them, the game is asymmetric
- Which player has the largest V/k will win, but this may not be known
- This may lead to two different giving up time strategies

War-of-attrition solutions

- ESS: Perceived winner and perceived loser select S (contest investment) from non-overlapping distributions
- Prediction 1: When V/k ratios are higher, contest duration increases
- Prediction 2: When V/k ratios are more similar, contest duration increases and variance in duration increases

Fight duration and resource value in newts

Larger females carry more eggs.

Males fight longer over larger females.

Sequential assessment

- Assumptions
 - Animals display in order to acquire information about each other's fighting ability and resource value
 - Fights only occur when animals are closely matched
- Assessment may occur via a single repeated display, or a series of different displays
- Animals improve their estimate of relative fighting ability with each round of display
- The ESS is to end fight when your estimate of relative fighting ability drops below a "giving up line"

Sequential assessment ESS

Dynamic programming model Predictions

-Fight duration increases as the asymmetry in fighting ability decreases and/or as resource value increases

-The cost of a fight increases as the asymmetry in fighting ability decreases

–Probability of winning increases with asymmetry

Contest duration and body size difference in doily-and-bowl spiders

•Males fight over access to females on webs

•Longer fights and higher variance in fight duration when body size of males more similar

Ownership effects in spider fights

Figure 21.9 Predicted and observed relationship between size asymmetry and probability of winning in the bowl and doily spider. The dashed line shows the quantitative prediction from the sequential assessment game. The solid line with error bars shows the observed probability of winning. Size asymmetry is computed as the natural log of the ratio of the larger to the smaller contestant. (A) Simultaneously introduced males. There is a good fit between observed and predicted probabilities. (B) Owner-intruder contests. Given their size, owners have a higher probability of winning than expected when a female is present. (After Leimar et al. 1991.)

Sequential assessment in phases

Figure 21.11 The sequential assessment game with several different behaviors. During the first stage, only behavior C is used; in the second stage, behaviors D and E are used; and in the final stage F (fighting) occurs. Axes are the same as in Figure 21.8. In this example, individual A gives up first. (After Enquist et al. 1990.)

Jumping spider contest stages

Figure 21.10 Stages in jumping spider contests. Contests in *Euophrys parvula* consist of distinct stages, always beginning with stage 1 and escalating to the next stage until one individual retreats. Each stage is associated with a different type of display or behavior, and each subsequent stage is associated with increasing risk of injury. All of the behaviors are mutual and performed by both spiders, i.e., when one escalates the other follows. (A) The stave display of stage 2. (B) The stage of escalation reached increases when the contestants are more similar in size. (A courtesy of Lyn Forster; B from Wells 1988.)

Sequential assessment in cichlids

Weight asymmetry

and (F) termination, in which the loser on the right adopts midline darkening and lowered fins. (From Krebs and Davies 1995, based on Jakobsson et al. 1979.)

Why give multiple signals?

- Each display serves a different function
- Displays transmit graded information about display intentions
 - Multiple signals may lower potential risk associated with escalation
- Signal erosion: threat displays lose effectiveness as the frequency of bluff increases

Cricket display costs

Intensity level	Energetic cost	Context or function	
Displays without contact			
Cerci raise	0.02*	Defensive act by loser or subordinate	
Prebout stridulation	0.02	Owner signal	
During stridulation	0.02	Mild aggressive threat	
Postbout stridulation	0.02	Postfight victory signal by winner	
Mandible flare	0.08	Aggressive threat, intention to bite	
Shake	0.49	Postfight victory signal by winner	
Tactics with light contact			
Head butt	0.37	Ritualized fighting tactic	
Foreleg punch	0.37*	Ritualized fighting tactic	
Mandible spar	0.45	Mutual ritualized fighting tactic	
Antennae lash	0.68	Dominance maintenance	
Stridulation lash	0.70	Dominance maintenance	
Tactics with hard contact			
Rear kick	0.37	Defensive act by loser or female guarder	
Head charge	0.61	Overt attack, often by burrow intruder	
Mandible lunge	0.61	Bite	
Wrestling	0.83	Mutual mandible lock with head twisting	

Little blue penguin fights

Figure 21.14 Contact behaviors used by cave- and burrow-dwelling little blue penguins during conflicts. Breeding pairs in cave-dwelling populations of the penguin (*Eudyptula minor*) nest colonially in large caves, whereas pairs in burrrow-dwelling populations nest in relatively isolated crevices. Cave-dwellers fight much more frequently than burrow-dwellers and possess five different contact signals shown here, compared to a single equivalent display (lunge/peck) in burrow-dwellers. Opponents are indicated with dashed outlines. (After Waas 1990b.)

Cave dwellers use more displays, but have fewer escalated fights

Little blue penguin display repertoire

Category	Risk level	Distance	Movement
Defensive distance increasing			
Low walk	1	<1	A
Submissiva hunch	1	<1	Away
Submissive nunch	1		Away
Defensive, stationary			
Face away	2	< 1	Stay
Indirect look	2	< 1	Stay
Offensive, stationary			
Direct look	3	> 3	Stay
Directed flipper spread	3	2-3	Stay
Point	3	1-2	Stay
Bowed flipper spread ^a	3	1-3+	Stay
Offensive, distance-reducing			
Zig-zag approach	4	2	Toward
Flipper spread approach	4	1	Toward
Contact			
Bill to back	5	0	Toward
Breast butt	5	0	Toward
Bill to bill	5	0	Toward
Bill slap	5	0	Toward
Bill lock/twist	5	0	Toward
Overt aggression			
Attack	6	0	_
Bite	6	0	_
Fight	6	0	_

Table 21.2 The agonistic display repertoire of cave-dwelling populations of little

Penguins use many displays

Little difference in body size

When should animals signal fighting ability vs motivation?

- If contestants only differ in fighting ability, then expect sequential assessment
 - Individuals often differ in body size or condition
- If contestants differ mainly in resource valuation, then contests should escalate and deescalate quickly
 - Signals and multiple display sets should reveal motivational level
 - Territorial systems, little body size variation
 - Previous experience likely affects contest outcome