
Appendix B  A Biologist’s Introduction to
Spectrum Analysis

About this appendix

This appendix provides some conceptual background for making and 
interpreting spectrogram and spectrogram slice views with Raven. It 
introduces the short-time Fourier transform (STFT), the mathematical 
technique used by Raven for making spectrograms. We do not discuss the 
mathematics of the STFT, but instead treat it here as a black box. This black 
box has controls on its outside that affect its operation in important ways. 
One aim of this appendix is to convey enough qualitative understanding 
of the behavior of this box to allow intelligent use of its controls, without 
delving into the box’s internal mechanism. Specific details of the controls 
are covered in Chapter 3, “Spectrographic Analysis”. A second aim of this 
appendix is to explain some of the limitations and tradeoffs intrinsic to 
spectrum analysis of time-varying signals. More rigorous mathematical 
treatments of spectral analysis, at several levels of sophistication, can be 
found in the references listed at the end of the appendix.

Several approaches can be taken to explaining the fundamentals of digital 
spectrum analysis. The approach taken in this appendix is geared specifi-
cally to spectrum analysis with Raven; thus some of the terms and con-
cepts used here may not appear in other, more general discussions of 
spectrum analysis, such as those listed at the end of the appendix.

The discussions in this appendix assume a basic understanding of how 
sound is recorded and represented digitally. If you are not already 
acquainted with concepts such as sampling rate and sample size, you 
should read Appendix A, “Digital Representation of Sound” before pro-
ceeding.

What sound is

Sound consists of traveling waves of alternating compression and rarefac-
tion in an elastic medium (such as air or water), generated by some vibrat-
ing object (a sound source). 

Sound pressure is the (usually small) alternating incremental change in 
pressure from ambient pressure that results from a sound. When no sound 
is present in a medium (i.e., there is no propagating pressure change), we 
say that sound pressure is zero, even though the medium does exert some 
static ambient pressure. The dimensions of pressure are force per unit 
Raven 1.2 User’s Manual 137



Appendix B:  Spectrum Analysis
area. The usual unit of sound pressure is the pascal (abbreviated Pa); one 
pascal equals one newton per square meter.  Since the smallest audible 
sound pressures in air are on the order of 10-6 Pa, sound pressures are usu-
ally expressed in µPa.

To measure or record sound at a particular location in space, we use a 
device such as a microphone that responds to sound pressure. A micro-
phone produces a time-varying electrical voltage that is proportional to 
the increase or decrease in local pressure that constitutes sound. This con-
tinuous time-varying voltage is an electric analog of the acoustic signal. 
The continuous electric signal can be converted to a digital representation 
suitable for manipulation by a computer as discussed in Appendix A, 
“Digital Representation of Sound”.

Time domain and frequency domain representations of sound

Any acoustic signal can be graphically or mathematically depicted in 
either of two forms, called the time domain and frequency domain represen-
tations. In the time domain, instantaneous pressure is represented as a 
function of time. Figure B.1a shows the time domain representation of the 
simplest type of acoustic signal, a pure tone. Such a signal is called a sinu-
soid because its amplitude is a sine function of time, characterized by some 
frequency, which is measured in cycles per second, or Hertz (Hz). The fre-
quency of a sinusoid is most easily determined by measuring the length of 
one period, which is the reciprocal of the frequency. The amplitude of the 
signal in the time domain is measured in pressure units. (Once an acoustic 
signal has been converted by a microphone into an electrical signal, ampli-
tude is measured as voltage, which is directly proportional to the sound 
pressure.) In the frequency domain, the amplitude of a signal is repre-
sented as a function of frequency. The frequency domain representation of 
a pure tone is a vertical line (Figure B.1b).
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Figure B.1.  Time and freq domain

Figure B.1.  Time domain and frequency domain representations of an 
infinitely long pure sinusoidal signal. (a) Time domain. t is the period of 
the sinusoid. (b) Frequency domain. f is the frequency of the sinusoid. 

Any sound, no matter how complex, can be represented as the sum of a 
series of pure tones (sinusoidal components). Each tone in the series has a 
particular amplitude, and a particular phase relationship (i.e., it may be 
shifted in time) relative to the others. The frequency composition of com-
plex signals is usually not apparent from inspection of the time domain 
representation. Spectrum analysis is the process of converting the time 
domain representation of a signal to a frequency domain representation 
that shows how different frequency components contribute to the sound. 
Frequency domain representations of sounds are often more intuitively 
interpretable because the mammalian auditory system (specifically the 
cochlea) performs a type of spectrum analysis in converting vibrations of 
the eardrum into neural impulses. Our auditory perception is thus based 
on a frequency domain representation of sounds. 

The complete frequency domain representation of a signal consists of two 
parts. The magnitude spectrum (Figure B.2b) contains information about the 
relative magnitude of each frequency component in the entire signal. The 
phase spectrum (Figure B.2c) contains information about the relative phase 
or timing relationships among the frequency components. Since the phase 
spectrum is rarely of practical use in most bioacoustic work and is not pro-
vided by Raven, it is not discussed further here. Henceforth, unless other-
wise noted, we use the term “spectrum” to refer to the magnitude 
spectrum alone.
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Figure B.2.  Time, freq domains-- 2 tones

Figure B.2.  Time domain and frequency domain representations of an 
infinitely long sound consisting of two tones, with frequencies of 490 Hz 
and 800 Hz. (a) Time domain. (b) Magnitude spectrum in frequency 
domain. (c) Phase spectrum in frequency domain. The phase of the fre-
quency component at 500 Hz is arbitrarily taken as a reference and 
assigned a phase value of 0.

The Fourier transform is a mathematical function that converts the time 
domain form of a signal (which is the representation directly produced by 
most measuring and recording devices) to a frequency domain representa-
tion, or spectrum. When the signal and spectrum are represented as a 
sequence of discrete digital values, a version of the Fourier transform 
called the discrete Fourier transform (DFT) is used. The input to the DFT is a 
finite sequence of values— the amplitude values of the signal— sampled 
(digitized) at regular intervals. The output is a sequence of values specify-
ing the amplitudes of a sequence of discrete frequency components, 
evenly spaced from 0 Hz to half the sampling frequency (Figure B.3). 
Raven implements the DFT using an algorithm known as the fast Fourier 
transform (FFT).
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Figure B.3.  DFT schematic

Figure B.3.  Schematic representation of the discrete Fourier transform 
(DFT) as a black box. The input to the DFT is a sequence of digitized 
amplitude values (x0, x1, x2, ... xN-1) at N discrete points in time. The 
number of input values N is called the DFT size. The output is a 
sequence of amplitude values (A0, A1, A2, ... A(N/2)) at N/2 discrete fre-
quencies. The highest frequency, f(N/2)-1, is equal to half the sampling 
rate (= 1/(2T), where T is the sampling period, as shown in the figure). 
The output can be plotted as a magnitude spectrum.

In practice, a spectrum is always made over some finite time interval. This 
interval may encompass the full length of a signal, or it may consist of 
some shorter part of a signal.

Spectral analysis of time-varying signals: spectrograms and STFT analysis

Most signals of biological interest change over time in frequency (spectral) 
composition. Indeed the changes in spectrum over time are often among 
the most interesting aspects of such signals. But in order to create a spec-
trum, we must examine an interval of time— there is no way to measure a 
signal’s “instantaneous” spectrum. An individual magnitude spectrum of 
a signal provides no information about temporal changes in frequency 
composition during the interval over which the spectrum is made. If we 
were to make a single magnitude spectrum over the entire duration of a 
spectrally varying signal such as a typical bird song, we would have a rep-
resentation of the relative intensities of the various frequency components 
of the signal, but we would have no information about how the intensities 
of different frequencies varied over time during the signal.  

To see how the frequency composition of a signal changes over time, we 
can examine a sound spectrogram.1 The spectrograms produced by Raven 

1. Sound spectrograms are sometimes called sonagrams. Strictly speaking, how-
ever, the term sonagram is a trademark for a sound spectrogram produced by 
a particular type of spectrum analysis machine called a Sonagraph, produced 
by the Kay Elemetrics Co.
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plot frequency on the vertical axis versus time on the horizontal; the 
amplitude of a given frequency component at a given time is represented 
by a color (by default, grayscale) value (Figure B.4).

Figure B.4. Spectrogram example.

Figure B.4.  Smoothed sound spectrogram of part of a song of a chest-
nut-sided warbler, digitized at 44.1 kHz.

Spectrograms are produced by a procedure known as the short-time Fourier 
transform (STFT). The STFT divides the entire signal into a series of succes-
sive short time segments, called records (or frames). Each record is used as 
the input to a DFT, generating a series of spectra (one for each record). To 
display a spectrogram, the spectra of successive records are plotted side 
by side with frequency running vertically and amplitude at each fre-
quency represented by  a color (by default, grayscale) value. Raven’s spec-
trogram slice view displays the spectrum of one record at a time as a line 
graph, with frequency on the horizontal axis, and amplitude on the verti-
cal axis. A spectrogram can be characterized by its DFT size, expressed as 
the number of digitized amplitude samples that are processed to create 
each individual spectrum.

The STFT can be considered as equivalent in function to a bank of N/2 + 1 
bandpass filters, where N is the DFT size. Each filter is centered at a 
slightly different analysis frequency. The output amplitude of each filter is 
proportional to the amplitude of the signal in a discrete frequency band or 
bin, centered on the analysis frequency of the filter. In this “filterbank” 
model of STFT analysis, the spectrogram is considered as representing the  
time-varying output amplitudes of filters at successive analysis frequen-
cies plotted above each other, with amplitude again represented by color 
(by default, grayscale) values. A spectrogram can be characterized by its 
bandwidth, the range of input frequencies around the central analysis fre-
quency that are passed by each filter. All of the filters in a spectrogram 
have the same bandwidth, irrespective of analysis frequency.

Record length, bandwidth, and the time-frequency uncertainty principle

The record length of a STFT determines the time analysis resolution (∆t) of 
the spectrogram. Changes in the signal that occur within one record (e.g., 
the end of one sound and the beginning of another, or changes in fre-
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quency) cannot be resolved as separate events. Thus, shorter record 
lengths allow better time analysis resolution.

Similarly, the bandwidth of a STFT determines the frequency analysis resolu-
tion (∆f) of the spectrogram: frequency components that differ by less than 
one filter-bandwidth cannot be distinguished from each other in the out-
put of the filterbank. Thus a STFT with a relatively wide bandwidth will 
have poorer frequency analysis resolution than one with a narrower band-
width.

Ideally we might like to have very fine time and frequency analysis resolu-
tion in a spectrogram. These two demands are intrinsically incompatible, 
however: the record length and filter bandwidth of a STFT are inversely 
proportional to each other, and cannot be varied independently. Although 
a short record length yields a spectrogram with finer time analysis resolu-
tion, it also results in wide bandwidth filters and correspondingly poor 
frequency analysis resolution. Thus a tradeoff exists between how pre-
cisely a spectrogram can specify the spectral (frequency) composition of a 
signal and how precisely it can specify the time at which the signal exhib-
ited that particular spectrum.

The relationship between record length and filter bandwidth applies to 
each of the individual spectra that collectively constitute a spectrogram. 
Figure B.5 illustrates the relationship between record length and filter 
bandwidth in individual spectra. The two spectra, of a 2000 Hz pure tone 
digitized at 22.05 kHz, were made with different record lengths and thus 
different bandwidths. Spectrum (a), with a record length of 1024 points 
(46.0 mS) , shows a fairly sharp peak at 2000 Hz because of its relatively 
narrow bandwidth (35.3 Hz) filter; spectrum (b), with a record length of 
256 points (11.5 mS), corresponding to a wider bandwidth (141 Hz) filter, 
has poorer frequency resolution.
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Figure B.5. Window length - bandwidth relationship

Figure B.5.  Relationship between record length and 3 dB bandwidth.  
Each view is of a single spectrum of a 2000 Hz tone, digitized at 22.05 
kHz. In both spectra, window function = Blackman. The highlighted 
band in each spectrum shows the 3 dB bandwidth.
(a) Window size = 1024 points = 46.0 mS; 3 dB bandwidth = 35.3 Hz.
(b) Window size = 256 points = 11.5 mS; 3 dB bandwidth = 141 Hz.

Making spectrograms

A spectrogram produced by Raven is a two-dimensional grid of discrete 
data points on a plane in which the axes are time and frequency. Ordi-
narily, this grid is not apparent because by default Raven smooths the 
spectrogram display, interpolating color values for pixels that are between 
the gridpoints where values were calculated by the STFT algorithm. If you 
turn off spectrogram smoothing and stretch the time and frequency scales 
adequately, the discrete nature of the spectrogram becomes evident (Fig-
ure B.6). In a spectrogram displayed with smoothing turned off, the color 
of each box represents an estimate of the logarithm of the relative sound 
power (in decibels) in a particular frequency band over a particular time 
interval. The center point of the box is at the center of the corresponding 
frequency band and time interval. 
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Figure B.6.  Boxy spectrogram

Figure B.6.  Same spectrogram as in Figure B.4, with smoothing 
turned off. The grayscale value in each box represents an estimate of 
the relative power in the corresponding frequency band and time inter-
val. Filter bandwidth = 124 Hz, window size (record length) = 512 sam-
ples (= 11.6 mS). Grid spacing = 5.8 mS x 86.1 Hz.

Raven lets you specify the spacing between gridpoints in the time dimen-
sion and thus the width of the boxes in an unsmoothed spectrogram. In 
Raven’s Configure Spectrogram dialog, you can specify the time grid spac-
ing directly, or indirectly by specifying the amount of overlap between 
successive records. (You specify the record length of a spectrogram in 
Raven by entering the size of a window function. Window functions are dis-
cussed in “Window functions” on page 151.) The spacing between grid-
points in the frequency dimension is determined by the DFT size. Raven 
chooses DFT size automatically, using the smallest power of 2 which is 
greater than or equal to the window size (in samples).

The relationships between time grid spacing and record overlap, and 
between frequency grid spacing and DFT size are discussed below. See 
Chapter 3, “Spectrographic Analysis”, for a detailed discussion of how to 
control these parameters in Raven.

Grid spacing should not be confused with analysis resolution. Analysis res-
olution for time and frequency are determined by the record length and 
bandwidth of a STFT, respectively. Analysis resolution describes the 
amount of smearing or blurring of temporal and frequency structure at 
each point on the grid, irrespective of the spacing between these points. 
The following sections seek to clarify the concepts of analysis resolution 
and grid spacing by showing examples of spectrograms that illustrate the 
difference between the two. 

Analysis resolution
and the time-

frequency
uncertainty

principle

At each point on the spectrogram grid, the tradeoff between time and fre-
quency analysis resolution is determined by the relationship between 
record length and bandwidth, as discussed above. According to the uncer-
tainty principle, a spectrogram can never have extremely fine analysis res-
olution in both the frequency and time dimensions.

For example, Figure B.7 shows two spectrograms of the same signal that 
differ in record length and hence, bandwidth. In spectrogram (a), with a 
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record length of 64 points (= 2.9 mS; bandwidth = 496 Hz), the beginning 
and end of each tone can be clearly distinguished and are well-aligned 
with the corresponding features of the waveform. However, the frequency 
analysis resolution is poor: each tone appears as a bar that is nearly 1200 
Hz in thickness. In spectrogram (b), the record length is 512 points, or 23 
mS (filter bandwidth = 61.9 Hz), or about as long as each tone in the signal. 
Most of the records therefore span more than one tone, in some cases 
including a tone and a silent interval, in other cases including two tones 
and an interval. The result is poor time resolution: the beginning and end 
of the bars representing the tones are fuzzy and poorly aligned with fea-
tures of the waveform (compare, for example, the beginning time of the 
first pulse in the waveform with the corresponding bar in the spectro-
gram). However, this spectrogram has much better frequency resolution 
than spectrogram (a): the bar representing each tone is only about 100 Hz 
in thickness.

Figure B.7. Time vs freq resolution.  

Figure B.7.  Effect of record length and filter bandwidth on time and fre-
quency resolution. The signal consists of a sequence of four tones with 
frequencies of 1, 2, 3, and 4 kHz, at a sampling rate of 22.05 kHz. Each 
tone is 20 mS in duration. The interval between tones is 10 mS. Both 
spectrograms have the same time grid spacing = 1.45 mS, and window 
function = Hann. The selection boundaries show the start and end of 
the second tone.
(a) Wide-band spectrogram: record length = 64 points ( = 2.90 mS), 3 
dB bandwidth = 496 Hz.
(b) Waveform, showing timing of the tones.
(c) Narrow-band spectrogram: record length = 512 points ( =  23.2 mS), 
3 dB bandwidth = 61.9 Hz.
The waveform between the spectrograms shows the timing of the 
pulses.
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What is the “best” window size to choose? The answer depends on how 
rapidly the signal’s frequency spectrum changes, and on what type of 
information is most important to show in the spectrogram, given your 
particular application. For many applications, Raven’s default window 
size (512 samples) provides a reasonable balance between time and fre-
quency resolution. If you need to observe very short events or rapid 
changes in the signal, a shorter window may be better; if precise frequency 
representation is more important, a longer window may be better1. If you 
need better time and frequency resolution than you can achieve in one 
spectrogram, you may need to make two spectrograms: a wide-band spec-
trogram with a small window for making precise time measurements, and 
a narrow-band spectrogram with a larger window for precise frequency 
measurements. 

Time grid spacing
and window overlap

Time grid spacing is the time between the beginnings of successive 
records. In an unsmoothed spectrogram, this interval is visible as the 
width of the individual boxes (Figure B.6). Successive records that are ana-
lyzed may be overlapping (positive overlap), contiguous (zero overlap), or 
discontiguous (negative overlap). Overlap between records is usually 
expressed as a percentage of the record length.

Figure B.8 illustrates the different effects of changes to record length and 
time grid spacing. The signal is a frequency-modulated tone that sweeps 
upward in frequency from 4 to 6 kHz, sampled at 22.05 kHz. Spectrograms 
(a) and (c) both have a record length of 512 points (= 23.2 mS; 3 dB band-
width = 61.9 Hz). (a) was made with 0% overlap (time grid spacing = 23.2 
mS), whereas (c) was made with an overlap of 93.8% (time grid spacing = 
1.45 mS). In the low-resolution spectrogram (a), each box is as wide as one 
data record, which in turn is one quarter of the length of the tone. The 
result is a spectrogram that gives an extremely misleading picture of the 
signal. Spectrogram (c), with a greater record overlap, is much “smoother” 
than the one with less overlap, and it more accurately portrays the contin-
uous frequency modulation of the signal. It still provides poor time analy-
sis resolution, however, because of its large record length— notice the 
fuzzy beginning and end of the spectrogram image of the tone and the 
poor alignment with the beginning and end of the tone in the waveform. 
Comparison of the spectrograms in Figure B.8 demonstrates that 
improved time grid spacing is not a substitute for finer time analysis reso-
lution, which can be obtained only by using a shorter record.

1.  If the features that you’re interested in are distinguishable in the waveform 
(e.g., the beginning or end of a sound, or some other rapid change in ampli-
tude), you’ll achieve better precision and accuracy by making time measure-
ments on the waveform rather than the spectrogram.
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Figure B.8. Window size window size - overlap

Figure B.8.  Different effects on spectrograms of changing record 
length (= window size, or time analysis resolution) and time grid spac-
ing. The signal is a frequency-modulated tone, 100 mS long, sampled 
at 22.05 kHz. The tone sweeps upward in frequency from 4 to 6 kHz. 
Spectrograms (a) and (c) have the same window size, but (c) has finer 
time grid spacing (higher record overlap). (b) and (c) have the same 
time grid spacing, but (c) has a shorter record length (finer time analysis 
resolution).
(a) Record length = 512 points = 23.2 mS (3 dB bandwidth = 61.9 Hz);
Time grid spacing = 23.2 mS (overlap = 0%).
(b) Waveform view, with duration of tone highlighted. 
(c) Record length = 512 points = 23.2 mS (3 dB bandwidth = 61.9 Hz);
Time grid spacing = 1.45 mS (overlap = 93.8%).
(d) Record length = 64 points = 2.9 mS (3 dB bandwidth = 448 Hz);
Time grid spacing = 1.45 mS (overlap = 50%).

Frequency grid
spacing and DFT

size

Frequency grid spacing is the difference (in Hz) between the central analy-
sis frequencies of adjacent filters in the filterbank modeled by a STFT, and 
thus the size of the frequency bins in a spectrogram. In an unsmoothed 
spectrogram, this spacing is visible as the height of the individual boxes 
(Figure B.6). Frequency grid spacing depends on the sample rate (which is 
fixed for a given digitized signal) and DFT size. The relationship is 

frequency grid spacing = (sample rate) / DFT size

where frequency grid spacing and sample rate are measured in Hz, and 
DFT size is measured in samples.  Thus a larger DFT size draws the spec-
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trogram on a grid with finer frequency resolution (smaller frequency bins, 
vertically smaller boxes). The number of frequency bins in a spectrogram 
or spectrum is half the DFT size, plus one.

Recall that the DFT size is the number of samples processed to calculate 
the spectrum of a record. Thus the DFT size would ordinarily be equal to 
the record length. However, Raven’s DFT algorithm requires that the size 
of the DFT be a power of 2. Therefore Raven automatically chooses the 
smallest DFT size that is a power of 2 greater than or equal to the record 
size. The sample data in each record are then filled out with zeros (“zero-
padded”) to make the record length the same as the chosen DFT size. Zero 
padding provides the right number of samples to match the chosen DFT 
size without altering the spectrum of the data.

Spectral smearing
and sidelobes

The spectra that constitute a spectrogram produced by a STFT are “imper-
fect” in several respects. First, as discussed above, each filter simulated by 
the STFT has a finite band of frequencies to which it responds; the filter is 
unable to discriminate different frequencies within this band. According 
to the uncertainty principle, the filter bandwidth can be reduced— thus 
improving frequency resolution— only by analyzing a longer record, 
which reduces temporal resolution.

Second, the passbands of adjacent filters overlap in frequency, so that 
some frequencies are passed (though partially attenuated) by more than 
one filter (Figure B.9). Consequently, when a spectrum or spectrogram is 
constructed by plotting the output of all of the filters, a signal consisting of 
a pure tone becomes “smeared” in frequency (Figure B.9d).
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Figure B.9.  Spectral smearing-- overlapping filters

Figure B.9.  Spectral smearing resulting from overlapping bandpass fil-
ters.
(a) A single hypothetical bandpass filter centered at frequency f0. When 
the input to the filter is a pure tone at frequency f0, the output amplitude 
is A0. For clarity of illustration, sidelobes to the main passband are not 
shown (see text and Figure B.10).
(b) Two overlapping filters, centered at frequencies f0 and f1. When the 
filter centered at f1 is presented with the same input as in (a), its output 
amplitude is A1.
(c) A bank of overlapping filters simulated by a STFT. Frequency f0 falls 
within the passbands of the filter centered at f0, and of two filters (blue 
and green) on either side.
(d) Spectrum of a pure tone signal of frequency f0 produced by the filter-
bank shown in (c). The spectrum consists of one amplitude value from 
each filter. Because the filters overlap, the spectrum is smeared, show-
ing energy at frequencies adjacent to f0. The shape of the resulting 
spectrum is the same as that of a single filter.
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Third, each filter does not completely block the passage of all frequencies 
outside of its nominal passband. For each filter there is an infinite series of 
diminishing sidelobes in the filter’s response to frequencies above and 
below the passband (Figure B.10). These sidelobes arise because of the 
onset and termination of the portion of the signal that appears in a single 
record. Since a spectrum of a pure tone made by passing the tone through 
a set of bandpass filters resembles the frequency response of a single filter 
(Figure B.9), a STFT spectrum of any signal (even a pure tone) contains 
sidelobes.

Figure B.10. Filter sidelobes

Figure B.10.  Frequency response of a hypothetical bandpass filter 
from a set of filters simulated by a short-time Fourier transform, show-
ing sidelobes above and below the central lobe, or passband. The mag-
nitude of the sidelobes relative to the central lobe can be reduced by 
use of a window function (see text). Note that a spectrum produced by 
passing a pure tone through a set of overlapping filters is shaped like 
the frequency response of a single one of the filters (see Figure B.9).

Window functions The magnitude of the sidelobes (relative to the magnitude of the central 
lobe) in a spectrogram or spectrum of a pure tone is related to how 
abruptly the windowed signal’s amplitude changes at the beginning and 
end of a record. A sinusoidal tone that instantly rises to its full amplitude 
at the beginning of a record, and then instantly falls to zero at the end, has 
higher sidelobes than a tone that rises and falls gradually in amplitude 
(Figure B.11).
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Figure B.11. Windowing  

Figure B.11.  Relationship between abruptness of onset and termina-
tion of signal in one record and spectral sidelobes. Each panel shows a 
signal on the left, and its spectrum on the right.
(a) A single record of an untapered sinusoidal signal has a spectrum 
that contains a band of energy around the central frequency, flanked by 
sidelobes, as if the signal had been passed through a bank of bandpass 
filters like the one shown in Figure B.10.
(b) A single record of a sinusoidal signal multiplied by a “taper” or win-
dow function, has smaller sidelobes.

The magnitude of the sidelobes in a spectrum or spectrogram can be 
reduced by multiplying the record by a window function that tapers the 
waveform as shown in Figure B.11. Tapering the waveform in the record is 
equivalent to changing the shape of the analysis filter (in particular, lower-
ing it sidelobes). Each window function reduces the height of the highest 
sidelobe to some particular proportion of the height of the central peak; 
this reduction in sidelobe magnitude is termed the sidelobe rejection, and is 
expressed in decibels (Table B.1). Given a particular record length, the 
choice of window function thus determines the sidelobe rejection, and also 
the width of the center lobe. The width of the center lobe in the spectrum 
of a pure tone is the filter bandwidth. 

Table B.1.  Sidelobe rejection for Raven’s five window 
types. The sidelobe rejection for each type is expressed as 
the height of the highest sidelobe relative to the peak of the 
main lobe.

Window type Sidelobe rejection (dB)

Blackman -57

Hamming -41

Hann -31

Rectangular -13

Triangular -25
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For further reading

The books and articles listed below can provide entry at several levels into 
the vast literature on spectrum analysis and digital signal processing.

Beecher, M. D. 1988. Spectrographic analysis of animal vocalizations: 
Implications of the “uncertainty principle.” Bioacoustics 1:(1): 187-
207.

Includes a discussion of choosing an “optimum” filter bandwidth 
for the analysis of frequency-modulated bioacoustic signals. 

Bradbury, J. and S. Vehrencamp. 1998. Principles of Animal Communica-
tion. Sinauer Associates, Sunderland, MA. 882 pp.

Chapter 3 provides an excellent introduction for non-specialist 
readers to the principles of spectrum analysis, and also discusses 
spectral properties of the basic types of animal acoustic signals.

Cohen, L.  1995.  Time-frequency analysis. Prentice-Hall, Englewood 
Cliffs, NJ.

Hlawatsch, F. and G.F. Boudreaux-Bartels.  1992.  Linear and quadratic 
time-frequency signal representations. IEEE Signal Processing 
Magazine, 9(2): 21-67.

A technical overview and comparison of the properties of a variety 
of time-frequency representations (including spectrograms), writ-
ten for engineers.

Jaffe, D. A.  1987.  Spectrum analysis tutorial. Part 1: The Discrete Fourier 
Transform; Part 2: Properties and applications of the Discrete Fou-
rier Transform. Computer Music Journal, 11(3):  9-35.

An  excellent introduction to the foundations of digital spectrum 
analysis. These tutorials assume no mathematics beyond high 
school algebra, trigonometry, and geometry. More advanced math-
ematical tools (e.g., vector and complex number manipulations) 
are developed as needed in these articles.

Marler, P. 1969. Tonal quality of bird sounds. In: Bird Vocalizations: Their 
Relation to Current Problems in Biology and Psychology (ed. R. A. 
Hinde), pp. 5-18. Cambridge University Press.

Includes an excellent qualitative discussion of how the time and 
frequency analysis resolution of a spectrum analyzer interact with 
signal characteristics to affect the “appearance” of a sound either 
as a spectrogram or as an acoustic sensation.

Oppenheim, A.V. and Schafer, R.W. 1975. Digital Signal Processing. Pren-
tice-Hall, Englewood Cliffs, NJ. xiv + 585 p.

A classic reference, written principally for engineers.
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Rabiner, L.R. and Gold, B.  1975.  Theory and Application of Digital Signal 
Processing. Prentice-Hall, Englewood Cliffs, NJ. xv + 762 p.

Another classic engineering reference.

Yost, W.A. and Nielsen, D.W.  1985.  Fundamentals of Hearing: An Intro-
duction. 2d ed. Holt, Rinehart and Winston, New York. x + 269 p.

A good general text on human hearing that includes some discus-
sion of the elementary physics of sound and an appendix that 
introduces basic concepts of Fourier analysis.
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