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This note has three objectives: first, we present a reanalysis
of a large data set (Wilkinson et al. 1990), addressing the
constancy of genetic variance-covariance (G) matrices; sec-
ond, we discuss possible causes for the statistically significant
changes found in G; and third, we discuss how such changes,
or lack thereof, affect retrospective selection analyses, which
attempt to reconstruct the long-term history of selection using
only contemporary estimates of differences between taxa and
estimates of genetic variances and covariances (Lande 1979).

A central issue in evolutionary biology is the relationship
between variation within taxa and differences among taxa.
From quantitative-genetics theory, we know that short-term
selection response is affected by patterns of genetic variation
and covariation (Falconer 1989, ch. 19). Lande (1979) ex-
trapolated this selection theory to elucidate the selection pres-
sures responsible for long-term changes. He showed that un-
der certain assumptions the net selection leading to the phe-
notypic divergence of two groups, a and b, could be char-
acterized retrospectively by the formula

B = G_l(za - 2b)- (1)

Here, B is an r X 1 vector of net selection gradients, ex-
pressing the magnitude of directional selection on each of
the r traits, G is the r X r matrix of additive genetic variances
and covariances, and Z, (Z;) is the r X 1 vector of trait means
in population a (b). When estimated within a single gener-
ation, the elements of B express the average slope of the
fitness surface with respect to change in each character, as-
suming, among other things, that the phenotypes have a mul-
tivariate Gaussian distribution (Lande and Arnold 1983;
Mitchell-Olds and Shaw 1987). Equation (1) has been used
to reconstruct the net selection gradient over many genera-
tions. This extrapolation requires several assumptions: for
instance, the observed divergence must be wholly genetic, it
must have been caused entirely by selection, and all of the
(directly) selected traits must be included in the analysis. In
addition, equation (1) is valid only if G is the same for both
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groups (e.g., populations, species, genera) and has remained
constant throughout the course of their divergence. Turelli
(1988) has emphasized that none of the models concerning
the maintenance of heritable variation guarantee constancy
of G and that this issue must be addressed empirically (see
also Barton and Turelli 1989). Substantial efforts have re-
cently been devoted to testing the constancy of G (Arnold
1981; Lofsvold 1986; Kohn and Atchley 1988; Billington et
al. 1988; Wilkinson et al. 1990; Shaw and Billington 1991;
Platenkamp and Shaw 1992; Brodie 1993). It nevertheless
remains difficult to draw a general conclusion, because most
reported studies are modest in scale and because studies differ
in both experimental and statistical approaches.

To date, most studies have addressed the constancy of G
indirectly by comparing G between present-day populations
whose histories since divergence are not known in detail.
One notable exception is the work of Bryant and his collab-
orators (e.g., Bryant and Meffert 1993) documenting drift-
induced changes associated with population bottlenecks. To
our knowledge, the most extensive experiment addressing the
role of selection is that of Wilkinson et al. (1990), who com-
pared G matrices for Drosophila melanogaster populations
previously subjected to 23 generations of divergent selection
on thorax length (for other examples, see Barton and Turelli
1989; Stanton and Young 1994). There are further unusual
strengths of this study. It is large, involving 150-200 families
for a total of 1500-1900 individuals for each of four popu-
lations, with five traits measured per individual. Moreover,
the genetic design, with parents subjected to positive as-
sortative mating and traits measured on both parents and
offspring, permits relatively precise estimation of additive
genetic components of variance and covariance. Finally, the
design permits estimation of common environment effects
that are likely to be substantial in many of the previously
published studies. It thus provides estimates of additive ge-
netic components that are free of bias due to common en-
vironment (for details of husbandry, selection, etc., see Wil-
kinson et al. 1990, especially p. 1994 for a discussion of
maternal effects).
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Despite the virtues of this experiment, a mistake in the
original statistical analysis may undermine its impact. Let
L(ya, G) denote the likelihood of the data, y,, from popu-
lation A given an estimate G of G. Wilkinson et al. (1990)
incorrectly tested the equality of the G matrices of popula-
tions A and B by comparing L(ya, GA) to L(ya, CB) (see
Wilkinson et al. 1990, p. 1997 and table 3). This approach
ignores the sampling variation of Gg. We have reanalyzed
the data using the likelihood method of Shaw (1991) to check
the original conclusions and to provide a context for dis-
cussing alternative mechanisms that may change G and their
consequences for retrospective selection analyses. Our anal-
yses yield three results: (1) as reported by Wilkinson et al.
(1990), there are statistically significant differences among
the G matrices of their four populations, (2) although selec-
tion may have played a role in producing these differences,
their magnitude and direction seem consistent with the effects
of genetic drift, and (3) even when estimated G matrices are
precisely constant, retrospective selection analyses may be
misleading because of unobserved transient changes in G
produced by periods of intense selection (the ‘‘Bulmer ef-
fect”’; Bulmer 1980).

METHODS

Our analyses used data in which bristle numbers, denoted
BB, were taken as the average of the values on both sides
of the fly, with the remaining traits measured in units of 10-2
mm. In contrast, components reported in the Appendix of
Wilkinson et al. (1990) are based on data with metric traits
in ocular units (o0.u.) unique to each trait (for thorax, denoted
TX, an o.u. = 4 X 10~5 m; for wing length [WL], an o.u.
= 6.25 X 10-5 m; and for wing width [WW] and tibia length
[TB], an o.u. = 2.5 X 10-3 m), and with bristle number as
the sum of the counts on both sides of the fly divided by 2.5.
To facilitate comparisons with other experiments, the phe-
notypic variance-covariance matrix and correlations are given
in the Appendix.

The analysis was done using Restricted Maximum Like-
lihood (REML; Patterson and Thompson 1971; Shaw 1987).
The population comparison program pcr2 in the Quercus pro-
gram package (Shaw and Shaw 1992) was adapted to take
account of the assortative mating applied. This requires in-
cluding extra terms in the variance-covariance matrix V that
appears in the log likelihood:

—2L,(y, ©) = log(IV]) + log(IX'V~'X])

+ (y — X&)’V iy — Xa). 2)

Here, y is the vector of observations, assumed to follow a
multivariate normal distribution, X is the design matrix for
the fixed effects (population, sex, and generation), « is the
vector of estimates of the fixed effects, and matrix transpose
is indicated by prime. The vector of parameters, O, is par-
titioned into six parts corresponding to the elements of three
symmetric matrices of variance and covariance components
(additive genetic G, common environment C, and microen-
vironmental E) for each of the two populations being com-
pared. Fractions of dominance and other nonadditive com-
ponents of genetic (co)variance would contribute to C, the
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remainder of each to E. The matrix V, the variance of the
multivariate normal y, is a function of these parameters, hav-
ing elements given by the expected covariance between a
particular pair of traits measured in a pair of individuals
whose relationship is specified. When mating is random, the
covariance between traits of unrelated individuals is 0; be-
tween trait i in parent and trait j in offspring, it is (1/2)g;;
and between trait i and trait j in a pair of full sibs, it is (1/
2)gij + ¢y

Assortative mating affects the elements of V. To account
for this, we added to each element of the V matrix terms
appropriate for the pair of relatives and traits from the ma-
trices below. Wilkinson et al. (1990, table 1) give complete
(and compact) expressions for the entries of V after scaling
to unit phenotypic variance for each trait. The first row and
column of the matrices below correspond to the thorax trait
(upon which assortative mating was performed). The second
and third rows and columns might correspond to any two
other traits. We here have used bristle number and wing
length as an example. The terms involve the matrices of
genetic and phenotypic variance-covariance components, G
and P = G + C + E. In what follows, for example, G,
refers to the additive genetic covariance between thorax and
wing length and Py = Gy + Cy t+ Ey is the phenotypic
covariance between thorax length and bristle number. The
term p which appears in every element below, is the corre-
lation between the thorax phenotypes of mates. We estimated
p separately for each population, directly from the phenotypic
correlation of thorax lengths for mating pairs. It was treated
as a known parameter in our likelihood calculations. Note
that, when mating is at random with respect to trait values
and, hence, p = 0, all of the terms below vanish. The parent-
offspring covariance matrix is not symmetric: the ijth entry
pertains to the relationship between the parent’s ith trait and
its offspring’s jth trait. The phenotypic ‘‘cross-covariance”
matrices are:

pP, PP, PP,
pP%  pP,P
pP, o , between parents, (3a)
Pﬂ Ptt
P ththw pPzgw
P p, Py,
PGy PGy
pGy ) )
pGuPw PGP PGP between parent
s . (3b)
2P, 2P, 2P, and offspring,
pGuPr, PGP PGiwPrv
2P, 2P, 2P,
and
1 pG?% pG,Gy  pG,Gyy between
2P pG, Gy pG?, GG |» offspring. Bo)
"\pG,Grn PGGu pG32,

The program pcr2 uses the Fisher Scoring algorithm to
maximize the likelihood. It can be seen from the complete
development of this algorithm (Searle et al. 1992) that only
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TaBLE 1. Additive genetic parameters estimated for each population. Additive genetic (co)variances are given on and above the diagonal
(approximate standard errors computed from the information matrix are included for descriptive purposes in parentheses), additive genetic
correlations are given below (approximate standard errors computed via the delta method are included for descriptive purposes in
parentheses). Estimates are for data with metric traits in units of 10-2 mm and with bristle number (BB) as the average of counts on

both sides.
Base
BB TX WL ww TB
BB 0.786 (0.092) —0.290 (0.156) —0.511 (0.223) —0.512 (0.156) —0.057 (0.103)
X —0.173 (0.093) 3.590 (0.601) 2.785 (0.658) 2.478 (0.474) 1.393 (0.306)
WL —0.234 (0.103) 0.597 (0.126) 6.056 (1.109) 4.085 (0.673) 1.585 (0.431)
WW —0.291 (0.088) 0.658 (0.112) 0.835 (0.123) 3.948 (0.537) 1.570 (0.294)
TB —0.054 (0.098) 0.619 (0.122) 0.542 (0.129) 0.665 (0.112) 1.410 (0.237)
Large
BB 0.838 (0.091) —0.111 (0.138) —0.100 (0.193) —0.175 (0.136) 0.067 (0.086)
X —0.074 (0.093) 2.670 (0.464) 3.245 (0.494) 1.952 (0.345) 1.059 (0.211)
WL —0.041 (0.079) 0.744 (0.107) 7.130 (0.835) 3.260 (0.483) 1.312 (0.291)
WW —0.119 (0.094) 0.746 (0.126) 0.762 (0.105) 2.566 (0.419) 0.884 (0.205)
TB 0.079 (0.101) 0.696 (0.134) 0.527 (0.109) 0.592 (0.130) 0.868 (0.168)
Small
BB 0.763 (0.091) 0.219 (0.175) —0.012 (0.279) 0.327 (0.156) 0.301 (0.122)
X 0.157 (0.127) 2.534 (0.800) 2.237 (1.075) 1.1490 (0.570) 1.303 (0.448)
WL —0.007 (0.154) 0.677 (0.283) 4.302 (1.942) 1.243 (0.949) 1.330 (0.738)
WW 0.285 (0.139) 0.545 (0.236) 0.456 (0.297) 1.726 (0.571) 0.748 (0.377)
TB 0.366 (0.157) 0.868 (0.275) 0.680 (0.320) 0.604 (0.266) 0.889 (0.349)
Control
BB 0.764 (0.087) 0.483 (0.150) 0.374 (0.210) 0.368 (0.128) 0.252 (0.096)
X 0.371 (0.113) 2.217 (0.524) 2.950 (0.549) 1.420 (0.324) 1.167 (0.243)
WL 0.171 (0.096) 0.792 (0.152) 6.255 (1.020) 2.486 (0.490) 1.587 (0.360)
ww 0.285 (0.097) 0.645 (0.145) 0.672 (0.121) 2.186 (0.361) 1.028 (0.208)
TB 0.293 (0.111) 0.796 (0.174) 0.645 (0.137) 0.706 (0.144) 0.969 (0.209)

V and the first derivative matrices (9V/06;) need adjustment
to account for assortative mating in the pedigree. Just as we
modified V by including the appropriate terms from (3), we
modified (8V/90,) by adding the first derivatives of the ad-
ditional terms.

Analysis of these data requires estimation of 90 parameters
in addition to p (five variance components and 10 covariance
components for each of the three matrices, G, C, and E, in
each of a pair of populations. Runs involving approximately
15,000 observations in 90 parameters took up to 20 CPU
hours on Sun SPARCstations. Four to six scoring iterations
led to convergence at the maximum of the log-likelihood
function (L,). To test the null hypotheses that the G matrices
of two populations are the same, we required the log-like-
lihood L, of that hypothesis. This we obtained by constraining
G to be the same in the two populations and by maximizing
the log likelihood under these equality constraints. Since the
G matrix for each population involves 15 covariance com-

TaBLE 2. Log-likelihood ratio statistics for testing equality of G
matrices.

Large Small Control
Base 20.16F 47.20%* 44.76%*
Large 27.12% 22.2%
Small 10.8%

0.1 <P <0.18; £ 0.5 < P; * P < 0.05; ** P < 0.005.

ponents, the constrained model has 15 fewer parameters than
the unconstrained model. In the absence of additional con-
straints (Shaw and Geyer 1993), the likelihood-ratio statistic,
2(L; — Ly), is asymptotically distributed as x2, with 15 de-
grees of freedom. This test was used to compare the G of all
pairs of the four populations. We have tested for differences
in G matrices among all possible pairs of the four popula-
tions, and this raises the issue of multiple testing. Adjustment
to account for multiple tests is not straightforward here. We
therefore report unadjusted P-values. A highly conservative
correction for the tests of full G matrices is to multiply the
P-values by 6, the number of pairs of populations compared.

RESULTS

The comparisons revealed highly significant differences in
G between the Base population and the population selected
for small thorax (‘‘Small’’) and also between the Base and
Control populations (tables 1, 2). The G matrices of the pop-
ulations selected for large and small thorax were also sig-
nificantly different. In contrast, the G matrix of Large did
not differ significantly (P > 0.15) from those of either the
Base or Control populations, nor did the G matrix of Small
differ significantly from that of Control.

The residuals were examined to assess agreement with the
assumption of normality. Quantile-quantile plots showed the
data to be very close to normal with the exception of the



BRIEF COMMUNICATIONS

bristle number trait which was considerably skewed. This
was corrected by log transformation. Two representative
comparisons (Base vs. Large and Base vs. Small) were run
with this transformation in place, and the resultant likelihood
ratios (21.8 for Base vs. Large and 48.9 for Base vs. Small)
gave P-values slightly smaller than the analyses of untrans-
formed data. Examination of the residuals also turned up an
outlier for wing width in the Small population. Its removal
from the data increased the test statistic of the Base vs. Small
comparison to 57.5.

A nonparametric Rao test, proposed by White (1982), was
also run on these comparisons. In contrast to the usual like-
lihood-ratio test, which assumes normality in the data, this
test is asymptotically distribution-free. It employs a direct
calculation of the variance of the gradient of the likelihood,
a calculation made valid here by the large number of inde-
pendent families in each population, and made possible by
the use of maximum likelihood (rather than REML). The
nonparametric Rao test gave test statistics of 20.66 for Base
versus Large and 61.10 for Base versus Small. Thus, all these
corrections to address the issue of deviations from normality
yielded smaller P-values than the parametric tests based on
untransformed data. These analyses gave us confidence that
violations of the normality assumption were not appreciably
affecting the tests. We here report analyses of untransformed
data in order to retain the same scales for all populations.

The selected populations, as well as the Control population,
tended to express lower additive genetic variance (V,) for
each trait than the Base population. In particular, V, for tho-
rax was substantially smaller in selected and Control popu-
lations than in the Base population, as was V, for wing width
and tibia length. Overall, decreases in V, were as much as
39% (for tibia length in the Large population). Exceptions
to the general decrease in V include bristle number in Large
and wing length in both Large and Control populations. In
general, differences in Vp tended to be in the same direction
as differences in V, In the Small population, however, all
traits except bristle number exhibited higher Vp than in the
Base population. Table 3 gives estimates of the sex-specific
means, heritabilities (h2) and additive coefficient of variation
(CV,) for each trait. In each case, the increase in V, was
associated with an increase both in A2 and CV,, advocated
by Houle (1992) as an alternative scale-independent measure
of additive variation.

The pattern of genetic covariances and correlations of
Large was similar to that of the Base population. There was
a single difference in sign of Cov, between bristle number
and tibia length. The structure of genetic covariance differed
more substantially between Base and Small, on the one hand,
and between Base and Control, on the other. Note that the
means for the Base and Control populations are very similar;
hence, the difference in the G matrices cannot be attributed
to a scale effect. Whereas in the Base population, Cov, of
bristle number with every other character was negative, the
Cov, involving bristle number in Small and Control were
positive with a single exception in Small. Additional like-
lihood comparisons of the G matrix of Base with that of
Small indicated that differences in trait covariances largely
accounted for the significant difference between these ma-
trices; collectively, the variance components were not sig-
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TABLE 3. Means (for males and females) and standardized additive
genetic variances (narrow-sense heritabilities, h?, and additive ge-
netic coefficients of variation, CV,) for each trait in each popu-
lation. The CV, were computed with the mean over both sexes;
values computed with sex-specific means differ from those reported
below by less than 9%. The metric traits are measured in mm and
bristle counts (BB) are the average of counts on both sides.

BB X WL WW TB
Base Xm 9.61 0.93 1.59 0.89 0.65
K¢ 10.03 1.08 1.86 1.02 0.71
h? 0.56 0.36 0.38 0.54 0.41
CV, 9.03 1.89 1.43 2.08 1.74
Large Xm 9.45 1.00 1.64 0.94 0.68
X¢ 9.65 1.15 1.91 1.07 0.74
h? 0.58 0.30 0.52 0.37 0.30
CV, 9.59 1.52 1.51 1.59 1.31
Small K 8.68 0.83 1.48 0.81 0.60
X¢ 9.26 0.96 1.74 0.93 0.66
h? 0.56 0.20 0.16 0.20 0.17
CV, 9.74 1.78 1.29 1.51 1.50
Control Xm 9.21 0.93 1.58 0.90 0.64
Xy 9.82 1.06 1.84 1.02 0.69
h? 0.55 0.24 0.40 0.40 0.30
CV, 9.18 1.50 1.46 1.54 1.47

nificantly different (likelihood-ratio test statistic [Irt] = 8.7,
df = 5, P > 0.1). Hence, the significant difference between
the G matrices is not likely to be attributable to a scale effect.
This is further supported by the fact that for all traits but
bristle number, the Small population has a higher phenotypic
variance than any of the other populations. Covariances in-
volving thorax differed significantly between populations (Irt
= 10.4, df = 4, P < 0.05), but those involving bristle number
differed far more strikingly (Irt = 19.4, df = 4, P <<<
0.005). Evidently, the genetic relationships between traits
other than those subject to direct selection can change pro-
foundly over relatively few generations.

In most cases, our estimates are very similar to those of
Wilkinson et al. (1990), when we take into account the dif-
ference in scale. Moreover, the signs of the covariances are
perfectly consistent with those of the previous analysis. The
trends of differences in the estimates of particular compo-
nents are also comparable, with a few exceptions. In partic-
ular, we did not find that V, and A% of thorax length was
greater in Small than in Base.

DiscussioN

In contrast to Wilkinson et al. (1990), we have not found
a statistically significant difference between the G matrix of
the Base population and that of the population selected for
large thorax. Our analysis does, however, agree with that of
Wilkinson et al. (1990), in demonstrating statistically sig-
nificant differences between the G matrix of the Base pop-
ulation and those of Small and Control. There are many cases
of striking differences in genetic variances and covariances
and also in their respective standardized values (fig. 1). In
the comparison between the Base and Control populations,
the estimated heritabilities (h?) declined by 27%-35% for
thorax length (TX), wing width (WW) and tibia length (TB).
In the comparison of Small with Base, h? declined by more
than 45% for all four length characters. Excluding correla-
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tions involving bristle number, differences ranged as high as
45% (wing length and wing width in Small). With the ex-
ception of the remarkable constancy of A2 for bristle number,
it does not appear that either heritabilities or genetic corre-
lations were stable over the 23 generations of this study.

Similar changes in genetic variances and covariances have
occurred in several experiments (Bohren et al. 1966; Sheridan
and Barker 1974). Recent analyses by Meyer and Hill (1991)
and Beniwal et al. (1992a,b) demonstrated decreases in ad-
ditive variances during about 20 generations of selection. The
observed changes in V, (and accompanying changes in ad-
ditive genetic correlations) are too large and too protracted
to be explained by inbreeding or the ‘“Bulmer effect,”” which
describes changes attributable to linkage disequilibrium cre-
ated by selection (Bulmer 1980, ch. 9). Hence, they were
attributed to changes in allele frequencies caused by selec-
tion. Most quantitative-genetic analyses predict changes in
G matrices during selection response (Turelli 1988). These
empirical studies document their magnitude. Studies with
sample sizes far smaller than those of Wilkinson et al. (1990)
that fail to find differences in G matrices across natural pop-
ulations are more likely to reveal the lack of statistical power
of the experimental designs (Shaw 1991) than the validity of
the hypothesis that G matrices remain constant (cf. Arnold
1992).

Genetic Drift May Explain the Observed Changes

Although selection is the expected cause of the observed
differences, the small size of the selected and Control pop-
ulations makes genetic drift a plausible alternative. This is
apparently supported by the highly statistically significant
difference between the G matrices of the Base and Control
populations. Yet, even in this comparison, selection is not
excluded, because the populations were maintained under
different culture conditions (large cage with overlapping gen-
erations for the Base vs. individual vials with discrete gen-
erations for the Control). Indeed, in Drosophila populations
moved from vials to cages, Buzzati-Traverso (1955) observed
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mean wing-size changes too large to be explained by drift
(Turelli et al. 1988). Thus, all of the differences we describe
may result from selection.

The consequences of drift on these populations are com-
plicated by the poolng of the replicates. During the 23 gen-
erations of selection, the census population size was 20 in
each of the four replicates of the Large, Small, and Control
treatments. Virgins were collected from each replicate,
pooled and allowed to mate to create the populations from
which the variance estimates were obtained. Thus, the ex-
pected allele frequencies in these pooled populations are the
averages of the allele frequencies in the replicates. Because
the number of generations of drift is not much greater than
the effective population sizes, we can approximate the cu-
mulative short-term effects of drift by assuming that the net
effective size for the pooled population was roughly four
times the effective size of each replicate (i.e., given that we
do not expect alleles to have been fixed by drift within the
replicates, we can ignore the population subdivision as a first
approximation). A typical value for the ratio of effective to
census population size for laboratory Drosophila experiments
is 0.6 (Crow and Kimura 1970, table 7.6.4.2). Hence, we
estimate the net effective size (denoted N,) for the pooled
Large, Small and Control populations as 48. We can ap-
proximate the expected reduction in the additive variance by

1 t
E = Vyol1 - — |
VarlVao) VA,O( 3 Ne) “)

(Crow and Kimura 1970, Sec. 7.5). Under these approxi-
mations, we expect that the additive variances will have been
reduced by 21% on average from the values in the large Base
population. Averaging the proportional changes in the vari-
ances for the five traits between the Base population and the
three smaller populations, we find that these 15 variances
were reduced, on average, by 23%. Such agreement with the
drift expectation is not seen in the average reductions for the
individual traits, which range from 0% to 45%. A more com-
plete analysis of the drift-induced changes in genetic vari-
ances (and covariances) must consider the variance of the
expected reduction of variance. In general, these variances
depend on the number of loci contributing to the genetic
variation of the traits, their linkage relationships and the with-
in-locus distributions of allelic effects (Zeng and Cockerham
1991). Given our ignorance of the genetics and the com-
plexity introduced by the pooling in the Wilkinson et al.
(1990) experiment, this will not be pursued. However, our
qualitative conclusion is that although selection may well
have altered the G matrices, the observed reduction in var-
iances seem compatible with expectations from genetic drift
alone.

Possible Role of the Bulmer Effect

As emphasized by Turelli (1988), even when selection does
not alter G appreciably by changing allele frequencies, it
generally produces changes via the Bulmer effect. Assuming
that many unlinked loci contribute to the variance in the
character (i.e., the ‘““Gaussian infinitesimal model’’), selection
on a random mating population changes the additive genetic
variance approximately according to
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1 1
AG, = EH,(ASP,)H,’ + E(GLE - Gy, &)

where H = GP~!, H' is the transpose of H, AP is the within-
generation change in the phenotypic covariance matrix
caused by selection, and Gy is the G matrix that would be
observed if all of the relevant loci were in linkage equilibrium
(Tallis and Leppard 1988; Turelli 1988; Taylor 1993; Turelli
and Barton 1994). For linked loci, the Bulmer effect is gov-
erned approximately by the harmonic-mean recombination
rate. For most taxa, this mean is likely to be near 0.5 for
randomly distributed loci; but it may be as small as 0.1 for
organisms like Drosophila with few chromosomes and re-
combination in only one sex (Bulmer 1974; 1980, p. 160).
In applications to artificial selection, Gy is generally as-
sumed to equal Gy, the G matrix in the initial generation
before selection begins (e.g., Meyer and Hill 1991). As in
our analysis of genetic drift, we will assume that the Base
population values estimate G. For the intensity of selection
practiced by Wilkinson et al. (1990), equation (5) predicts
that the additive variance for thorax length after four gen-
erations is reduced by about 18% from its initial value and
remains indefinitely very near that value (this model ignores
allele frequency changes and assumes free recombination,
which accounts for the rapid approach to equilibrium pre-
dicted by eq. [5]). However, if we use Bulmer’s (1974) har-
monic-mean recombination rate approximation for Drosoph-
ila, n, = 0.1, we predict that the additive variance for thorax
length will be reduced by 45% (see Bulmer 1980, eq. 9.47).
Because selection was relaxed for three generations before
the estimates were made, the harmonic-mean approximation
predicts that the observed additive variance for thorax will
be reduced by roughly 33% in the Large and Small popu-
lations relative to the initial (Base) values. There: are asso-
ciated reductions in the additive variances and covariances
for correlated characters. In fact, the additive variances for
thorax in the Large and Small populations are reduced by
26% and 29%, respectively, relative to the Base population.
Although this suggests reasonable agreement with the Bulmer
prediction, it must be noted that the additive variance for
thorax in the unselected Control population was reduced by
38% relative to the Base. This ‘“‘agreement’ is surely spu-
rious. Hence, we will not pursue a more detailed analysis of
the possible relevance of the Bulmer effect to these data. Our
conclusion is simply that both genetic drift and selection may
plausibly explain the observed changes. Almost certainly,
both processes contribute.

For organisms with more chromosomes than Drosophila
and recombination in both sexes, harmonic-mean recombi-
nation rates are near 0.5 (Bulmer 1974). Hence, if selection
were relaxed for three generations before genetic variances
were estimated, only 12.5% of the Bulmer-effect reduction
of variance would remain. We show below that the Bulmer
effect can nonetheless seriously confound retrospective se-
lection analyses.

Does constancy matter? The quantitative results of retro-
spective selection analyses depend critically on this assump-
tion (Turelli 1988). If multivariate selection response is de-
scribed exactly by the standard Gaussian equation (cf. Turelli
and Barton 1994),
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Az, = GB, (6)

the net selection gradient, B, = 37 B, is

7-1
Br= G“I(Aﬂ - t;} G, — G)Bz), @

where G is the average of G over time and A;zZ = Zp — 1 —
Zyis the cumulative change in the mean. Thus, to reconstruct
accurately the net selection gradient from equation (1), the
current estimate of G must accurately approximate the mean
of G throughout the period of evolutionary divergence and
the second term on the-right-hand side of equation (7) must
be smaller than the first. Turelli (1988) mistakenly implied
that the second term would vanish if the variation in G was
restricted to a multiplicative constant, so that G, = k,A for
some constant matrix A. In fact, this leads to no useful sim-
plification. Thus, even if genetic correlations were ‘‘more
resistant” to change by selection than covariances (Wilkinson
et al. 1990), this does not help validate retrospective selection
analyses. Moreover, as demonstrated below, even if one finds
identical estimates of G between taxa, retrospective selection
analyses may still be misleading.

The Bulmer Effect May Confound Retrospective Selection
Analyses Even When G Is Apparently Constant

Most estimates of G matrices are made in the laboratory
under conditions of relaxed selection. Hence, in the context
of the Bulmer-effect equation (5) for the dynamics of G, most
experiments are likely to estimate Gpg rather than the G
matrices resulting from selection and contributing to selec-
tion response. Many episodes of selection are likely to alter
G through genotype-environment interaction and/or changes
in allele frequencies. Here we concentrate on the conse-
quences of changes in G induced by the Bulmer effect that
can be produced by episodes of strong, fluctuating selection
of the sort documented in Darwin’s finches (Gibbs and Grant
1987). We will show that retrospective selection analyses
based on Gy can lead to qualitatively incorrect conclusions
concerning the direction and magnitude of selection. Allow-
ing dominance, but no epistasis, we assume that G g remains
constant during episodes of selection that produce a net
change A;Z for a suite of characters. Let

Bretro = GI:I!E AT2 (8)

denote the net selection gradient estimated by retrospective
selection analyses, under the assumption that selection is re-
laxed for some generations before estimating G. We compare
this to the actual value of B obtained by taking into account
the changes in G, produced by the Bulmer effect (eq. 5).

For simplicity, we consider index selection on two traits
(Falconer 1989, ch. 19). This involves truncation selection
on a linear combination, such that only individuals with phe-
notypes satisfying az; + bz, > k survive, for some constants
a, b, and k. Let p denote the fraction of the population that
survives. The greatest confounding occurs with selection on
characters that are intrinsically uncorrelated. Let E denote
the matrix of environmental and nonadditive genetic effects
and assume that
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2 1 0
Gt = (O O(.)S) and E = (O 1). €

If we select for (z; + z,) with p = 0.2 for three generations,
and then select for —(z; + z;) with p = 0.2 for three gen-
erations, we obtain

0.18 -0.07
Bretro - (018)7 but BT - (_007>7 (10)

so that both the magnitude and the signs of the estimated net
selection intensities are incorrect. If we select for (z; + z,)
with p = 0.2 for three generations, then select for —(2z; +
z,) with p = 0.2 for three generations, we obtain

-0.09 —-0.44 '
Brewo = ( 0.96 )’ but Br= ( 0.82 >, arn)

so that the relative magnitudes of direct selection on the two
traits are poorly approximated.

These are admittedly extreme examples chosen to illustrate
the level of confounding that can be produced under the
simplest genetic model that takes into account selection-in-
duced changes in G. In contrast, numerical examples indicate
that if selection continues in a fixed direction without re-
versals, B and By will differ only by a constant related
to the reduction in variance caused by the Bulmer effect.
Similarly, weak selection over many generations or strong
selection that is approximately exponential in form would
produce little change in G from the Bulmer effect. Never-
theless, the examples above demonstrate that in addition to
the other assumptions necessary to support retrospective se-
lection analyses, one must also assume that selection neither
dramatically alters phenotypic variances nor exhibits dra-
matic reversals of direction.

Conclusions

One motivation for estimating G matrices is that they will
reveal the most likely paths of evolution. Recent population
genetic analyses support the usual Gaussian predictions for
selection response (eq. 6) and the Bulmer effect (eq. 5) over
the short term, even when selection is strong and the distri-
bution of breeding values is not quite normal (Turelli and
Barton 1994). Yet predicted and realized responses to arti-
ficial selection often differ appreciably (Sheridan 1988; Hill
and Caballero 1992), particularly for correlated characters
(e.g., Falconer 1989, ch. 19; Gromko et al. 1991), perhaps
because of the contribution of alleles of major effect or with
deleterious pleiotropic effects (e.g., Mackay and Langley
1990). Moreover, as noted by Zeng (1988), G often says
nothing about long-term evolution in a unimodal fitness land-
scape. As long as there is any genetic variation in the ap-
propriate directions, the population is expected to track a
moving optimum. This conclusion requires, however, that
genetic variation in the appropriate directions is available,
which may not be true when numerous traits are simulta-
neously subject to selection (Gomulkiewicz and Kirkpatrick
1992). Similarly, with multiple fitness peaks, genetic covar-
iances can play a decisive role in determining which peak is
reached (Price et al. 1993). In view of these points, we suggest
that short-term predictions based on sound estimates of ge-
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netic parameters are likely to be qualitatively informative. In
contrast, both the empirical results of this study and the the-
oretical considerations suggest that quantitative predictions
for long-term selection response and retrospective analyses
of selection should be interpreted with caution (Falconer
1989, ch. 12).
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APPENDIX
Phenotypic parameters estimated for each population, units as in table 1. Phenotypic (co)variances are given on and above the diagonal,

phenotypic correlations are given below.

Base Large
BB TX WL wWwW TB BB TX WL wWwW TB
BB 1.405 —0.081 —0.111 —0.244 0.059 1.450 0.155 —-0.071 0.017 0.141
TX —0.022 9.868 7.391 4.880 3.246 0.043 8.922 6.422 4.065 2.382
WL —0.023 0.586 16.107 7.486 4.717 —-0.016 0.582 13.629 5.965 3.128
WwWw -0.076 0.576 0.691 7.276 2.838 0.005 0.519 0.616 6.881 1.938
TB 0.027 0.555 0.631 0.565 3.464 0.068 0.465 0.494 0.431 2.944
Small Control
BB 1.354 0.502 0.422 0.427 0.433 1.393 0.768 0.669 0.596 0.365
X 0.121 12.805 13.423 6.928 5.456 0.212 9414 6.354 3.353 2.504
WL 0.069 0.716 27.416 11.628 8.861 0.144 0.525 15.590 5.614 3.856
WwWw 0.126 0.665 0.762 8.484 4.361 0.215 0.466 0.606 5.507 1.941
TB 0.161 0.659 0.731 0.647 5.360 0.172 0.452 0.541 0.458 3.256




