
E���������	
 ����	��
 �� longevity predict 
that average life span should increase as the rate 
of extrinsic mortality decreases (Austad and 
Fischer 1991). For example, the ability to fl y may 

contribute to long life span in birds and bats 
through decreased vulnerability to environ-
mental contingency (Holmes and Austad 1994). 
Probability of dying from extrinsic factors, such 
as predation, disease, or accidents, is believed to 
infl uence life span because the force of natural 
selection decreases with age. If extrinsic sources 
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A�
�	���.—Evolutionary hypotheses regarding longevity predict that life span 
should increase as extrinsic mortality rates decrease. Specifi cally, a decline in age-
specifi c survival and fertility should evolve and decrease life span in proportion to 
the magnitude of the mortality risk. We examined these ideas using a new data set on 
maximum longevity, ecology, and life history of 162 parrot species (Psi� aciformes). 
Parrots are generally long-lived but exhibit remarkable variation in life span between 
similar-sized genera, with particularly long-lived species occurring in the Cacatua, 
Calyptorhynchus, and Amazona. A� er controlling for both body size and phylogenetic 
ancestry using a phylogenetic supertree of all 352 parrot species, type of diet and 
communal roosting explain signifi cant variation in parrot life span, but the infl uence 
of communal roosting is statistically dependent on an association with diet type. We 
suggest that extreme longevity in parrots has evolved in response to species-specifi c 
characteristics of diet, habitat, and behavior that infl uence extrinsic mortality rates. 
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La Dieta Infl uencia la Longevidad en los Psi� aciformes

R�
����.—Las hipótesis evolutivas relacionadas con la longevidad predicen 
que la duración de la vida debe incrementarse cuando las tasas de mortalidad 
extrínseca disminuyen. Específi camente, se esperaría una disminución evolutiva en 
la supervivencia y la fertilidad a edades específi cas, causando una disminución en la 
longevidad proporcional a la magnitud del riesgo de mortalidad. Examinamos estas 
ideas empleando una base de datos nueva sobre la longevidad máxima, la ecología 
y las historias de vida de 162 especies de Psi� aciformes. Los Psi� aciformes son 
generalmente longevos pero existe amplia variación en la longevidad entre géneros 
con especies de tamaño corporal similar; las especies particularmente longevas 
pertenecen a los géneros Cacatua, Calyptorhynchus y Amazona. Luego de controlar por 
el tamaño corporal y la ancestría fi logenética empleando un superárbol fi logenético 
de las 352 especies de Psi� aciformes, el tipo de dieta y el uso de perchas comunales 
explicaron signifi cativamente la variación en la longevidad, pero la infl uencia del 
uso de perchas comunales depende estadísticamente de una asociación con el tipo de 
dieta. Sugerimos que la extrema longevidad de los Psi� aciformes ha evolucionado 
como respuesta a características de la dieta, el hábitat y el comportamiento 
específi cas de las especies que infl uencian las tasas extrínsecas de mortalidad.
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of mortality are important, then late-acting del-
eterious mutations in the population will not be 
exposed to selection, thus accumulating over 
time. Late-acting deleterious mutations that 
also have benefi cial eff ects early in life result in 
antagonistic pleiotropy, and can further infl u-
ence the evolutionary relationship between 
aging and extrinsic mortality (Partridge 2001). 
Under either the mutation-accumulation or 
antagonistic-pleiotropy mechanism, a decline 
in age-specifi c survival and fertility (i.e. senes-
cence) should evolve and decrease life span in 
proportion to the magnitude of the mortality 
risk (Austad 1997). In support of this view, the 
rate of aging has been directly related to the risk 
of mortality for birds and mammals (Ricklefs 
1998, Ricklefs and Scheuerlein 2001).

We present the fi rst comparative examination 
of the evolution of longevity within the parrots 
(Psi� aciformes). Parrots have been poorly stud-
ied in the wild, and a history of association with 
humans has only recently provided reliable 
longevity data for many species in captivity 
(Brouwer et al. 2000). The anecdotal reputation 
of parrots as very long-lived is not undeserved; 
they are the longest-lived order of birds for 
their body size (Prinzinger 1993). Psi� acids also 
exhibit striking variation in life span between 
similar-sized taxa. We examined the evolution 
of life span in parrots using modern compara-
tive methods and an extensive new database of 
longevity, life history, and ecological variables 
that seemed likely to refl ect species diff erences 
in the rate of extrinsic mortality. Given this 
assumption, we predicted that mortality risk is 
associated with body size, foraging group size, 
communal roosting, diet type, aridity of habitat, 
latitude, and restriction to islands.

We predicted that the mortality risk from 
predation should be lower for larger-bodied 
species because they should have fewer preda-
tors than small-bodied species. Because many 
parrots are restricted to islands where predation 
or interspecifi c competition may be lower than 
in mainland habitats (Miller et al. 2000), we also 
predicted that insular species should exhibit 
greater longevity. We expected parrots with 
large foraging-group sizes and communal roost-
ing to exhibit longer life spans, because fl ocking 
and communal roosting should reduce the 
per-capita risk of predation through predator 
dilution, enhanced vigilance, or both. Nesting 
habits that provide protection from predators 

(such as cavity- or colonial-nesting) are associ-
ated with lower mortality rates (Martin 1995), 
lower fecundity, and the evolution of longer life 
span in birds (Owens and Benne�  1995) and 
bats (cave-roosting; Wilkinson and South 2002). 
Sociality has been implicated in the extended 
life spans of some taxa (Carey and Judge 2001), 
with eusocial insects providing the most con-
vincing case (Keller and Genoud 1997). The gre-
garious nature of most parrots while foraging or 
roosting may result in lower extrinsic mortality 
in unpredictable environments. We also exam-
ined the infl uences of diet type, latitude, and 
aridity of habitat on longevity, because social 
behavior and the risk of starvation may be asso-
ciated with diet, habitat, and foraging behavior 
(Cannon 1984, Jullien and Clobert 2000).

Diet type and annual fecundity may be associ-
ated with life span because of trade-off s between 
allocation of resources to somatic maintenance 
(e.g. repairing oxidative damage) and reproduc-
tion. Life span evolves as a consequence of joint 
selection for current reproduction along with 
survival and future reproduction. These evolu-
tionary pressures may be infl uenced by seasonal 
food availability. Therefore, variation in diet 
type and annual fecundity may be associated 
with longevity even if these variables do not 
directly infl uence the risk of extrinsic mortality. 
We examined the infl uence of annual fecundity 
on longevity, and the infl uence of diet type on 
annual fecundity, to see whether costs associated 
with reproduction are implicated in the evolu-
tion of life span in parrots.

We also report comparisons between longev-
ity and each ecological or life-history variable 
using analysis of phylogenetically independent 
contrasts, because closely related species are 
likely to share life-history characteristics as a 
result of recent common ancestry. No phylog-
eny of all the species included in our study was 
available, so we combined 53 phylogenetic trees 
from 28 studies into a single data set to create 
a phylogenetic “supertree” (Bininda-Emonds et 
al. 1999) of all parrot species.

M�����


Data collection.—Life-history and ecological 
data were compiled from primary and second-
ary literature for 162 parrot species for which 
Brouwer et al. (2000) reported maximum life 
span in captivity. We used captive longevity 
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records exclusively because these data are col-
lected in the relative absence of extrinsic mor-
tality and are closer to theoretical maximum 
life spans (Ricklefs and Scheuerlein 2001). We 
excluded maximum longevities under fi ve years 
because all such records represented single 
individuals that died within a few months of 
entering captivity (n = 11 records excluded).

We used the following life-history variables: 
adult body mass (g; n = 142) and annual fecun-
dity (number of clutches per year × clutch size; 
n = 149). We used the following ecological vari-
ables: aridity of habitat (n = 162), communal 
roosting (yes or no; n = 162), diet type (n = 159), 
feeding-group size (maximum; n = 115), latitude 
(middle of species range; n = 155), and restric-
tion to islands (yes or no; n = 162). Aridity was 
ranked according to degree of precipitation (1 = 
arid, 2 = mesic, 3 = variable, and 4 = humid). 
Type of diet was ranked according to protein 
content (1 = frugivorous, nectarivorous, or both; 
2 = omnivorous; and 3 = granivorous).

Phylogenetic methods.—Species data cannot be 
treated as statistically independent, because spe-
cies are related through descent from common 
ancestors (Felsenstein 1985). Hence, we used 
CAIC (Comparitive Analysis by Independent 
Contrasts) so� ware, version 2.6.9 (Purvis and 
Rambaut 1995) to convert species data into evo-
lutionarily independent contrasts. We created a 
phylogenetic “supertree” (Sanderson et al. 1998) 
of all 352 parrot species by combining informa-
tion from 53 phylogenetic trees from 28 system-
atic studies published since 1970 (Appendix). 
The supertree matrix was constructed using 
Matrix Representation with Parsimony (MRP; 
Baum 1992, Ragan 1992) where studies over-
lapped in species included in the analysis. We 
took measures to ensure the independence of 
the phylogenetic trees entering the fi nal super-
tree analysis, because many single studies 
reported more than one tree calculated using 
the same data set (Bininda-Emonds et al. 2004). 
Nonindependent trees from the same study were 
fi rst combined in one matrix using MRP. Then a 
single strict consensus tree was calculated from 
the most parsimonious trees found using the 
branch-and-bound algorithm in PAUP*, version 
4.0b10 (Swoff ord 2001). Only this single con-
sensus tree entered the fi nal supertree matrix. 
Additionally, only trees that used unique data 
sets were included as independent entries in the 
supertree matrix. All source trees received equal 

weighting in the analysis, and methods of tree 
combination followed those used previously 
for carnivores (Bininda-Emonds et al. 1999) and 
bats (Jones et al. 2002). We followed the spe-
cies nomenclature of Juniper and Parr (1998) 
throughout the analysis.

All parrot species were not analyzed simul-
taneously because performance of the MRP 
method decreases with large numbers of taxa 
(Bininda-Emonds and Sanderson 2001). We 
analyzed the following clades separately: 
Cacatuidae (n = 21 species), Loriidae (n = 55), 
New World Psi� acidae (n = 147), and Old 
World Psi� acidae plus the three other higher-
level clades (n = 132). Parrot systematists have 
long considered the Cacatuidae and Loriidae 
to represent monophyletic clades, though not 
always separate families (Forshaw 1989, Sibley 
and Ahlquist 1990). The New World parrots 
have been separated from Australasian parrots 
on the basis of shared morphological charac-
ters (Tribe Arini; Smith 1975), and Sibley and 
Ahlquist (1990) further argued that parrots 
could be separated by continental distribution 
(e.g. South America, Africa, Australia).

We found the most parsimonious trees for the 
Cacatuidae matrix using the branch-and-bound 
algorithm in PAUP*. For the three larger matri-
ces, we calculated a strict consensus of the most 
parsimonious trees found using 10 replicate runs 
of the Parsimony Ratchet with 1,000 iterations 
each. The ratchet is a heuristic search strategy 
that moves around tree space more quickly 
than many traditional searching methods by 
reweighting a random subset of 25% of the char-
acters at the beginning of each iteration (Nixon 
1999). We used the PAUPRat computer program 
to implement the ratchet in PAUP* (Sikes and 
Lewis 2001). We set all branch lengths equal 
because branch lengths were not available. CAIC 
performs reasonably well under this assumption, 
even when the phylogeny is poorly resolved 
(Purvis et al. 1994). The data matrices used to 
create the supertree, and the supertree topol-
ogy, are available electronically from TreeBASE 
(study accession no. S1219 and matrix accession 
nos. M2107–M2110; see Acknowledgments).

Statistical methods.—Continuous vari-
ables (body mass, longevity, annual fecun-
dity, feeding-group size, and latitude) were 
log-transformed (log

10
) prior to analysis to 

improve normality. We controlled for body 
size in analyses using species data by taking 
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the residuals from a least-squares regres-
sion of log-transformed body mass on log-
transformed longevity, because most life-history 
traits in homeotherms are highly correlated 
with body size (Lindstedt and Calder 1981). 
We controlled for body size in analyses using 
independent contrasts by taking the residuals 
from a least-squares regression forced through 
the origin (Garland et al. 1992) of the indepen-
dent contrasts of log-transformed body mass on 
log-transformed longevity. We then analyzed 
these data using two diff erent approaches. First, 
we examined the eff ects of life history and ecol-
ogy on longevity using least-squares regression 
(continuous variables) and one-way analysis of 
variance (ANOVA; categorical variables: arid-
ity, diet type, communal roosting, and island 
restriction). Second, we used least-squares 
regression forced through the origin to examine 
relationships between phylogenetically inde-
pendent contrasts of residual longevity and 
continuous independent variables. We tested 
whether contrasts between residual longevity 
and categorical variables diff ered signifi cantly 
from zero in the hypothesized direction using 
one-tailed t-tests (Purvis and Rambaut 1995). 
We also analyzed fecundity in relation to diet 
type using both species data and independent 
contrasts to examine the hypothesis that energy 
availability infl uences longevity through eff ects 
on fecundity.

We conducted a multiway ANOVA on spe-
cies data to examine more complex statistical 
relationships between residual longevity and 
communal roosting, diet type, and island 
restriction, including the interaction between 
diet and island restriction. We further exam-
ined associations between diet and island 
restriction, and diet and communal roosting, 
using chi-square contingency-table analysis, 
and one-way ANOVA of diet on longevity 
and communal roosting on longevity for each 
communal-roosting and diet category, respec-
tively. We used a signifi cance level of P ≤ 0.05 
for all statistical tests. Analyses were conducted 
using the so� ware package SAS, version 8.02 
(SAS Institute, Cary, North Carolina).

R�
���


Longevity was not evenly distributed taxo-
nomically among the Psi� aciformes. Parrots in 
the family Cacatuidae exhibited generally greater 

mean longevity (39.5 years, n = 19) than species 
in the Psi� acidae (22.7 years, n = 120) or Loriidae 
(17.0 years, n = 23). This same pa� ern was observed 
a� er factoring out body mass (Cacatuidae: mean 
residual longevity = 8.7 years, n = 19; Psi� acidae: 
mean residual longevity = 0.7 years, n = 111; 
Loriidae: mean residual longevity = –1.5 years, n = 
18). The two genera with the most long-lived spe-
cies before and a� er factoring out body mass were 
also cacatuids: Calyptorhyncus (mean longevity = 
46.0 years, n = 3; mean residual longevity = 11.7 
years, n = 3) and Cacatua (mean longevity = 39.5 
years, n = 12; mean residual longevity = 8.7 years, 
n = 12). The genus with the next most long-lived 
species was a Neotropical genus: Amazona (mean 
longevity = 33.5 years, n = 11; mean residual 
longevity = 5.1 years, n = 9). The Pink Cockatoo 
(Cacatua leadbeateri) exhibited the most extreme 
longevity ever recorded a� er factoring out body 
size: 35.0 residual years. The Salmon-crested 
Cockatoo (C. moluccensis; 28.7 residual years) and 
Yellow-crowned Amazon (Amazona ochrocephala; 
26.4 residual years) have also exhibited extreme 
life spans for their body sizes.

Larger psi� acid species live longer than 
smaller species (F = 120.86, df = 1 and 146, P < 
0.0001, adjusted r2 = 0.45), and parrots also have 
longer life spans in captivity compared with 
other birds of the same body size (Fig. 1). A� er 
controlling for body size, only diet type and 
restriction to islands explained a signifi cant pro-
portion of variation in life span (Table 1 and Fig. 
2). Parrots that form communal roosts tended 
to exhibit higher residual longevity, a diff er-
ence that approached signifi cance (P = 0.065). 
However, contingency-table analyses confi rmed 
that diet was signifi cantly associated with both 
island restriction (χ2 = 24.45, df = 2, P < 0.0001) 
and communal roosting (χ2 = 8.06, df = 2, P < 
0.05). Multiway ANOVA revealed that the island 
eff ect was a� ributable to an interaction between 
diet type and island restriction rather than island 
restriction by itself (diet * island interaction: F = 
3.19, df = 2 and 136, P < 0.05; Fig. 2).

One-way ANOVAs of diet on residual longev-
ity were signifi cant for each communal roosting 
category (communal roosting = no, F = 4.06, df = 
2 and 59, P < 0.05; communal roosting = yes, F = 
5.58, df = 2 and 78, P < 0.01). By contrast, one-way 
ANOVAs of communal roosting on residual lon-
gevity for each diet category were not signifi cant 
(diet = nectarivory–frugivory, F = 0.40, df = 1 
and 25, P = 0.53; diet = omnivory, F = 1.53, df = 1 
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F��. 1. Least-squares regression of log-transformed body mass (g) on log-transformed life span 
(years) in parrots. Open circles represent record longevities for individual species in captivity 
(n = 141). Black line represents the regression equation for parrots (years = 3.79 × mass0.34). Gray line 
represents the regression equation of maximum longevity versus body mass for 131 bird species in 
captivity, including 13 parrot species (years = 5.10 × mass0.23; Prinzinger 1993).

T���� 1. Results of linear regression (continuous variables) or t-tests and ANOVAs 
(categorical variables) on log-transformed longevity in parrots (*P < 0.05, **P < 0.01, ***P < 
0.001). See text for details of analyses.

 Longevity controlled Longevity controlled for
 for body mass body mass and phylogeny

Independent variables F df F t df

Continuous variables 
 Annual fecundity 0.01 1, 135 0.52  1, 45
 Feeding-group size 1.71 1, 108 0.05  1, 34
 Latitude 0.01 1, 144 0.62  1, 47
Categorical variables
 Aridity 1.37 3, 144  –0.45 29
 Communal roosting 3.45 1, 146  1.71* 25
 Diet type 11.02*** 2, 140  2.95** 16
 Island versus mainland 14.05*** 1, 146  –0.87 8
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and 91, P = 0.22; diet = granivory, F = 0.13, df = 1 
and 21, P = 0.72), confi rming that diet is primar-
ily responsible for the signifi cant association 
between longevity and communal roosting.

A� er controlling for both body mass and 
phylogenetic ancestry using independent 
contrasts, communal roosting and type of diet 
signifi cantly predicted longevity in parrots. 
Specifi cally, evolution of communal roost-
ing and evolution of a granivorous diet were 
associated with the evolution of longer life 
span (Table 1). Diet also explained a signifi cant 
proportion of variation in annual fecundity 
a� er controlling for body size (F = 7.40, df = 2 
and 126, P < 0.001; Fig. 3). Progeny per year was 
not signifi cantly associated with diet type a� er 
factoring out both body mass and phylogenetic 
eff ects (t = –0.19, df = 15, P > 0.8).

D�
��

���

Although larger parrots live longer than 
smaller parrots (Fig. 1), change in dietary spe-
cialization was the primary factor associated 

with the evolution of life span a� er controlling 
for both body size and phylogenetic ancestry. 
Specifi cally, evolution of granivory was asso-
ciated with the evolution of longer life span. 
Our analyses do not support previous predic-
tions that high-quality diets result in higher 
fecundity, and thus shorter life spans, because 
of higher costs of reproduction (Lack 1968). 
Studies of southern African passerines found 
that mean adult life expectancy of insectivores 
and nectarivores (3.1 years) is nearly twice that 
of granivores (1.6 years) a� er factoring out body 
size and phylogeny (Peach et al. 2001). These 
granivorous passerines lay larger clutches than 
insectivores and nectarivores, which prompted 
Peach et al. (2001) to argue that the shorter life 
spans of granivorous species are a� ributable to 
costs associated with reproduction. Similarly, 
marsupial species that specialize on energy-
poor herbivorous diets exhibit lower fecundity 
and greater longevity than marsupials with 
relatively faunivorous diets (Fisher et al. 2001).

The positive relationship between communal 
roosting and longevity found here was primarily 

F��. 2. Mean residual longevity (controlled for body mass) of parrots by restriction to islands and 
diet types. Error bars represent one standard error of the mean residual longevity. Numbers above 
columns represent sample sizes (n = number of species) for each diet and island combination.
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explained by the infl uence of diet type. However, 
parrots are one of the most gregarious groups of 
birds, and communal roosting may have an 
additional infl uence on longevity in lineages spe-
cialized for granivory by reducing extrinsic mor-
tality rates (Partridge and Harvey 1988, Keller 
and Genoud 1997). Seed-eating parrots o� en 
inhabit relatively arid environments with unpre-
dictable resources and form large fl ocks during 
periods of patchily distributed food or water 
(Cannon 1984). Communal roosting and fl ocking 
may increase survival rates by improving detec-
tion of scarce resources (Jullien and Clobert 2000, 
Peach et al. 2001), facilitating social transfer of 
information about foraging sites (Chapman et al. 
1989), or reducing predation through increased 
vigilance (Westco�  and Cockburn 1988, South 
and Prue� -Jones 2000).

Alternatively, periodic resource shortages 
faced by granivorous parrots may extend lon-
gevity through caloric restriction. This mecha-
nism has been implicated in extending the 
life span of laboratory rodents that face short 
periods of famine, perhaps because resources 

are shi� ed away from reproduction in favor 
of increased somatic maintenance (Shanley 
and Kirkwood 2000). Female life span was also 
extended when Mediterranean fruit fl ies were 
experimentally switched from a sugar-only to 
protein-containing diet, most likely because 
of increased allocation of resources to somatic 
maintenance (Romanyukha et al. 2004).

Nutritional pressures are an alternative expla-
nation for the infl uence of dietary specialization 
on parrot longevity. Protein content represents 
the major nutritional diff erence among nectar-, 
fruit-, and seed-based diets in parrots (Pryor 
2003). Strict frugivory or nectarivory is rela-
tively uncommon in parrots, most likely because 
dietary protein defi ciency is a major nutritional 
constraint despite adaptations for low-protein 
diets in some species (Pryor et al. 2001). The 
highly specialized frugivorous Pesquet’s Parrot 
(Psi� richas fulgidus) and nectarivorous Red Lory 
(Eos bornea) have much lower protein require-
ments than the fully granivorous Budgerigar 
(Melopsi� acus undulatus; Pryor 2003). However, 
the two former species also have both shorter 

F��. 3. Mean residual progeny per year (controlled for body mass) by diet type of parrots. Error 
bars represent one standard error of the mean residual longevity. Numbers above columns repre-
sent sample sizes (n = number of species).
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life spans for their body size and fewer progeny 
per year than M. undulatus. The Budgerigar has 
recently been employed as a cellular and genetic 
model of senescence in birds (Ogburn et al. 2001), 
but comparative research on parrots specialized 
for frugivory or nectarivory is needed to identify 
a potential diet-mediated mechanism of life-span 
variation in parrots.

Biases associated with keeping parrots in cap-
tivity cannot be completely discarded as expla-
nations for the relationship between maximum 
longevity and diet. Natural granivorous diets 
may be much easier to replicate in captivity than 
diets based on fruit or nectar, resulting in routine 
chronic stress on frugivorous and nectarivorous 
species. If granivorous and omnivorous species 
have also been kept in captivity more frequently 
or for a longer period, then they are again likely 
to have longer reported life spans. The database 
used for this study does not seem to be biased 
by variable sample sizes of species with diff er-
ent dietary specializations (Brouwer et al. 2000). 
Also, records for nectarivorous and frugivorous 
species are not generally more recent than records 
for other parrots. Frugivorous and nectarivorous 
parrots readily breed and appear to be healthy in 
captivity (Pryor 2003). Unfortunately, far too few 
data are available from wild parrot populations 
to examine possible biases associated with using 
captive data (Juniper and Parr 1998).

The composite supertree of the Psi� aciformes 
was generally poorly resolved, containing only 
98 nodes, or 28% of a fully bifurcating solu-
tion. By contrast, recent supertrees of seabirds 
(Procellariformes; 62.0%; Kennedy and Page 
2002) and bats (Mammalia: Chiroptera; 46.4%; 
Jones et al. 2002) that used tree-construction 
methods similar to those used here exhibited 
higher resolution. Systematic studies have not 
been distributed evenly across the Psi� aciformes: 
the number of characters per taxon in each 
matrix ranged from 1.73 for the Cacatuidae and 
1.41 for the Old World Psi� acidae to 0.74 for the 
New World Psi� acidae and 0.64 for the Loriidae. 
The large polytomies and lack of resolution in 
the parrot supertree is likely a� ributable to a 
lack of information for many clades rather than 
confl ict among source trees. A benefi t of the 
MRP supertree method is the ease with which 
topologies from new phylogenetic studies can be 
incorporated into the supertree for future analy-
ses. Given the large sample size (162 out of ~352 
parrot species) and the high concordance in the 

present study between analyses based on spe-
cies data and independent contrasts, we expect 
that improved resolution in the parrot supertree 
would increase sample size for independent con-
trast analysis and increase support for the results 
presented here.

Our analyses indicate that the evolution of 
long life span in parrots is infl uenced by eco-
logical factors. The evolution of dietary special-
ization on fruit or nectar appears to be related 
to reduced longevity in parrots, whereas the 
evolution of communal roosting and granivory 
are associated with extended life span. These 
results support evolutionary hypotheses of 
longevity, because extrinsic mortality rates are 
likely to vary depending on the characteristics 
of a species’ behavior, habitat, and diet.
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