Production and Transmission of Light

- Measurement
- Light and color production
 - Pigments, interference, scattering, bioluminescence
- Transmission through the environment
- Optimal hue, contrast, shading

Properties of light signals

- Brightness
 - Intensity of reflected (or self-generated) light (units = radiance)
 - Function of surface structure and range of wavelengths reflected
- Spectral composition (color)
 - Hue (dom. wavelength) and chroma (saturation)
- Spatial characteristics
 - Size, shape, color pattern of body structure
 - Position and posture of sender
- Temporal characteristics
 - Variability in the above characteristics

Color Spectra

Color

Color results from selective absorbtion/reflectance

Color has 3 dimensions

Color systems are based on human color perception

Sources of color

- Pigments
 - Molecules which selectively absorb photons of some wavelengths and transmit others
 - Size of molecule affects wavelength absorption
 - Short chain molecules require high energy (short wavelengths) for excitation
- Structural colors
 - Interference
 - Scattering

Pigments (absorbtion spectra are inverse of reflectance spectra)

(A) Benzene

Benzene absorbs UV

Carotene absorbs blue and transmits green, yellow and red Come in different lengths

Pterins: yellows and oranges found in insects

Verdins create blue-green color in bird egg shells

Porphyrins: iron = hemoglobin, magnesium = chlorophyl, copper = turacin

Carotenoids in widowbirds and bishops

Note tail vs color, comes from diet

Badges of status in Collared widowbirds Pryke et al 2001 Anim Behav 62:695-704

Pterins

Photos from www.butterflies.com

Porphyrins

Schalow's turaco

Bird photos from <i-bird.com>

Great frigatebird

Melanin and Guanine

- Melanin
 - Large protein that absorbs all wavelengths and, therefore, appears black
 - Present in skin and hair of mammals, chitin of many insects
 - Coat color variants are caused by temporal regulation of melanin production during hair follicle growth, e.g. agouti phenotype: dark-light-dark
- Guanine
 - Forms platelets that reflect all wavelengths
 - Found in fish scales, appear silver

Status badges in Harris sparrows

 Male. He stayed in the flock but suffered a sigmileantly higher rate of attack. 2 Female. She left the 3 M flock and travelled elled alone, where she tended edge to be attacked less often suffe than before. high

3 Male. He often travelled alone or on the edge of the flock and suffered a significantly higher rate of attack.

4 Male. The only bird to show an improvement in status, he stayed in the flock, where he tended to be attacked *less* often than before.

Structural colors are caused by interference

Color depends on the reflection angle from feathers

- Created by layer of wax or keratin over feather, scale, etc.
- Positive interference (waves in phase) results at a certain thickness (*x*) refractive index (*n*) and angle of incidence for a given wavelength
- Refractive layer may be underlain with melanin to absorb non-reflecting wavelengths

Interference in feathers

- Constructive interference enhanced by stacking refracting layers
- Found in hummingbirds and peacocks and some butterfly wings

Beetles coat melanin with wax

Temporal modulation of color: chromatophores

Fish

Iridiophores contain platelets that reflect some wavelengths

Cuttlefish have chromatophores

Chameleons can change color

Temporal modulation of color: bioluminescence

Figure 8.10 The luciferin of the firefly *Photinus*. The active part of all luciferins is the COOH terminal group, which in the excited state (indicated by *) forms a double-bonded CO group allied with a system of conjugated double bonds in the rest of the molecule. One photon is released.

Bioluminescence is common among marine organisms, especially deep-sea fishes.

Bioluminescence in squid

- Created by symbiotic
 Vibrio bacteria
- Used for counterillumination to downwelling moonlight

Jones & Nishiguchi, 2004, Marine Biology 144: 1151-1155 See http://www.lifesci.ucsb.edu/~biolum/organism/squid.html

Reception of light signals

- Receiver always receives veiling atmospheric light, reflected signal, and reflectance from background
- Must distinguish signal (Qr) from noise (Qv and Qb)

Habitat Transmission

- Color brightness of an object depends on wavelengths of available light
- Amount and spectral composition of available light can differ by habitat
- In terrestrial habitats, light spectra is influenced by angle of Sun, weather, vegetation
- Expect animals to utilize colors appropriate for habitats

Light intensity variation

Table 8-5 Light Intensities in Various Environments

Situation	Intensity * (Photons cm ⁻² s ⁻¹ nm ⁻¹)		
Full sunlight	1014		
Overcast daylight	1013		
Twilight	1011		
Moonlight	10 ⁸		
Clear moonless night (starlight + airglow)	10 ⁶		
Overcast moonless night	10 ⁵		
Full sunlight at 1000 m in clear ocean waters	10 ⁶		

* Spectral density near 500 nm (Lythgoe 1979, 4-6; Brines and Gould 1982).

Color filtering by habitat

Guppy Color Patterns

Guppy Gallery

The male guppies depicted in this simulation only begin to demonstrate the vast range of colors and patterns expressed by wild guppies. Below are some examples of wild guppies, both males and females, from Trinidad and South America.

See Shockwave slide show at http://www.pbs.org/wgbh/evolution/sex/guppy/index.html

Light attenuation

- Light attenuation follows inverse square law which is independent of wavelength
- Scattering and absorption, however, increase as wavelength decreases

Table 8.1 Light-beam attenuation lengths in different media.								
	Wavelength (nm)							
Environment	300	400	500	600	700	800		
Pure air	7.0 km	22 km	55 km	120 km	220 km	370 km		
Clean air	3.8 km	5.0 km	6.0 km	6.7 km	7.4 km	7.9 km		
Moderate fog	50 m	50 m	50 m	50 m	50 m	50 m		
Pure water	?	23 m	28 m	5.4 m	2.0 m	0.49 m		
Ocean	?	1–10 m	1–15 m	1–5 m	1–2 m	?		

Source: Dusenbury 1992.

Signal detection

- Senders must produce a signal that contrasts from background using brightness, color, pattern or movement
- Can adopt countershading or reverse counter shading for crypsis or conspicuousness
- Visual systems often exaggerate contrast to detect objects in background

Signal contrast varies with habitat

Optimal signal and background hues

Habitat	Available light illumination level (hue)	Background hue	Optimal signal color
Night	Low (gray)	Black	White, biolumin
Open ocean, lake	Low to med. (blue)	Blue	Yellow
Marine reef	High (blue)	Blue	Red, yellow
Freshwater streams	Low to high (yellow-green)	Yellow-green	Blue, red
Tropical forest	Med. (green)	Green	Red
Temperate forest	Med. to high (green)	Yellow-green	Purple
Broadleaf litter	Med. (green)	Yellow	Blue
Forest tree trunk	Med. (green)	Orange	Blue-green
Grass, bush, marsh	High (white)	Yellow-green	Blue
Dried grass, old field	High (white)	Yellow	Blue
Sand dune	High (white)	Orange	Blue-green
Sky	High (white)	Blue	Black
Water surface	High (white)	Blue	Black or white
Low sun angle	Low, (purple)	Dark	White, yellow

 Table 8.2 Optimal signal hue in different environments and backgrounds.

Source: After Hailman 1979 and Lythgoe 1979.

Pattern contrast

Shape enhancement

Black margate

Oscellated frogfish

Rhacophorus

Counter and reverse shading

