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Abstract

Mitochondrial DNA cytochrome b sequences of 849 base pairs are reported
from eight species of Australian bowerbirds. These sequences are used with three
from the literature (Edwards et al., 1991) to investigate bowerbird phylogeny
using maximum parsimony and maximum likelihood methods. With respect to the
three outgroup species, bowerbirds are shown to be monophyletic with high
confidence using the bootstrap. The monogamous Ailuroedus crassirostris (which
does not clear display courts) is indicated as the sister group to other bowerbirds.
The maypole-builders (Amblyornis macgregoriae and Prionodura newtoniana) are
significantly supported as a clade indicating a common origin for maypole type
bowers, despite large differences in the design of these species’ bowers. The
avenue-builders (Sericulus chrysocephalus, Ptilonorhynchus violaceus, Chlamydera
maculata and C. nuchalis) are also monophyletic. The pattern of divergence in
avenue builders accords with the predictions of Gilliard’s (1956, 1963) “‘transferral
effect”. The transference hypothesis is not supported by evidence suggesting that
the dull plumage of Scenopoeetes is an ancestral condition in bowerbirds. The use
of sticks to build bowers could have had a single evolutionary origin and been
secondarily lost in Scenopoeetes, or evolved independently in the avenue and
maypole builders.

* To whom correspondence should be addressed.
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Introduction

Since Darwin (1871) discussed the evolution of the elaborated tails of male peafowl,
biologists have tried to understand the evolution of extreme, sex-limited male display
characters. These extreme male display characters have evolved at least 9 times
among birds (Gilliard, 1963) and similar patterns are shown in other taxa (e.g.
Eberhard, 1987). Males with extreme display traits typically provide nothing to
females or offspring except sperm, yet females often show preference for a limited
set of males (e.g. Scott, 1942; Buechner and Roth, 1974; Robet, 1966; Borgia, 1985a;
Hoglund and Lundburg, 1987 and references in Bradbury and Gibson, 1983). Theories
of sexual selection have focused on female choice as a force shaping the evolution
of these traits (e.g. Fisher, 1930; Zahavi, 1975; Trivers, 1972; Emlen and Oring, 1977,
Hamilton and Zuk, 1982; Andersson, 1982; Lande, 1981; Kirkpatrick, 1985, 1986).

Historical information about display trait evolution can be critical to understand-
ing sexual selection. The phylogenetic analysis of such traits was first attempted by
Darwin (1871) when he traced the evolution of eye spots on feathers in pheasants
related to peafowl. In modern terms phylogenetic information can be used to
determine if mechanisms of sexual selection dictate particular evolutionary patterns.
Gilliard (1956, 1963) noted that there appeared to be a trade off between bower and
plumage characters in bowerbirds. More recently, the widely-discussed runaway
model (e.g. Lande, 1981) proposes very rapid evolution of highly elaborated male
display traits and suggests a highly variable degree of elaboration of male traits
among closely related species. The degree to which these variable patterns exist has
never been tested.

The recent development of methods for direct sequencing of mitochondrial DNA
(mtDNA) has opened new possibilities for studies of systematic relationships. The
use of DNA sequences for estimating phylogenetic relationships is of particular
value because it allows relationships to be investigated independently of gross
phenotypic characters, and because it affords numerous relatively independent
characters for analysis. This independence is critical when attempting to evaluate
the role of common evolutionary history in determining phenotypic similarity.

Here we apply these methods to study relationship among the bowerbirds
(Family: Ptilonorhynchidae) in an effort to evaluate the role of sexual selection in
shaping male display traits. Birds in this family are unique in that males have
evolved to build display courts with associated stick structures called bowers
(Marshall, 1954b; Gilliard, 1969) and bowers are decorated with colored objects.
The display traits of bowerbirds (Tab. 1) are of special interest both because of
their uniqueness relative to other species and because of the large variation among
species in the types and degree of elaboration of display characters (Marshall,
1954a, b, ¢; Mayr and Jennings, 1952; Gilliard, 1969).

There are 15 species that build bowers or clear courts (Marshall, 1954b; Cooper
and Forshaw, 1977). Most species fall into one of two major groups that build
either “avenue™ (8 species, 3 genera) or “maypole” (5 species, 2 genera) bowers.
The remaining species (2 in 2 genera) are not obviously associated with either of
these categories (Borgia, 1986). These species clear courts, but do not build bowers.

Evolution of bowerbirds

Table 1. Classification of bowerbird display traits'

Study site

Lek Interactive  Crest

Court Decoration  Showey  Polygyny

Bower

Species

calls

plumage

clearing

type

no no no

no no

no

No bower

Green Catbird

Aitarnorhie oraceiractric

Wallaby Creek, Urbenville,

N.S.W.. Australia
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Some bowerbird species show highly elaborated bowers and display courts and
the cause of this elaboration is not known ( Marshall, 1954b; Gilliard, 1969; Cooper
and Forshaw, 1977; Borgia et al., 1985; Diamond, 1987). Even within categories
there are large differences in the shape, size and decoration of bowers (Marshall,
1954b; Gilliard, 1969; Diamond, 1986), extent and color of plumage dimorphism,
and acoustical displays (personal observation). Species vary in the extent to which
they share common types of display and, as in the case of crests and bowers, it is
not clear if similarities occur because of common origin or because of convergent
evolution.

Gilliard (1956, 1963) hypothesized that male bowerbirds may have reduced the
costs of display by the transfer of costly plumage display traits to bower decora-
tions (Gilliard, 1969, p. 396). Various sexual selection models have focused on the
costs of male display and some authors consider them as critical in allowing truthful
advertising (Zahavi, 1975; Andersson, 1982; Kodrick-Brown and Brown, 1985).
Thus indications of selection for reduced male cost of display would be relevant to
evaluating these models. Gilliard’s hypothesis is based on the observation of an
inverse relation between male plumage brightness and the degree of bower elabora-
tion (Gilliard, 1956). Phylogenetic information would be useful in testing his
prediction that bright plumage represents the ancestral condition in bowerbirds.

Elsewhere, it has been suggested that runaway sexual selection can cause rapid
and unexpected divergence in sexually selected traits (Lande, 1981; Arnold, 1983).
Phylogenetic information on bowerbirds could help address this question by
indicating the extent and speed with which novel display traits emerge within
groups.

The form of bowers and other display traits has been important in the construc-
tion of the currently available phylogenies (see Marshall, 1954; Gilliard, 1963,
1969). Here we present our initial evidence on the phylogenetic relationships among
8 species of bowerbirds that represent 7 of 8 genera and which include all major
bower types and mating systems in the Ptilonorhynchidae. Phylogenetic relation-
ships inferred from mtDNA sequence data are then used to construe patterns of
character trait evolution and the extent to which extreme elaborations of species
traits are dependent on common evolutionary origin. DNA hybridization studies
have provided limited information about bowerbird relationships (Sibley and
Ahlquist, 1987; Sibley et al., 1987), but because representatives of only three genera
were included general evolutionary relationships could not be deduced.

Materials and methods

Species

In total, eleven species were considered in the phylogenetic analyses. The se-
quence data for eight of these were obtained in our laboratories: Spotted Bower-
bird, Chlamydera maculata; Great Bowerbird, Chlamydera nuchalis, Satin
Bowerbird, Ptilonorhynchus violaceus; Regent Bowerbird, Sericulus chrysocephalus;
Golden Bowerbird, Prionodura newtoniana, Tooth-billed Bowerbird, Scenopoeetes
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dentirostris; Green Catbird, Ailuroedus crassirostris and Paradise Riflebird, Ptiloris
paradiseus. In addition the sequence data for three other species were taken from
+Edwards et al. (1991): MacGregor’s Bowerbird, Amblyornis macgregoriae; Buff-
tailed Sicklebill, Epimachus albertisii and Australian Magpie, Gymnorhina tibicen.
Together these species represent all genera of Australian bowerbirds, one genus
from New Guinea (4. macgregoriae) and two putative outgroups; the birds of
paradise (E. albertisii and P. paradiseus) and the corvids (G. tibicen).

Preparation of DNA

DNA was isolated from liver, heart, or muscle tissue. Crude mtDNA was
extracted following Crozier et al. (1989) with minor modifications. Total DNA was
extracted according to a modification of Hillis and Davis (1986). 0.1-0.3 g of tissue
was ground to a fine powder in liquid nitrogen and added to 300 ul of digestion
solution (100 mM Tris-HCl pH8, 1 mM EDTA, 100 mM NaCl). Cells were lysed
with SDS (10%, 50 ul) and proteins degraded with Proteinase K (25 mg/ml) for 1.5
hours at 55° C. The preparation was extracted twice with equal volumes of
phenol : chloroform : isoamyl alcohol (25:24:1). DNA was precipitated with 95%
ethanol (2 volumes) and 5 M NaCl (0.1 volumes) and resuspended in 100 ul TE
(10 mM Tris-HCI, 0.1 mM EDTA).

Polymerase chain reaction and direct sequencing

Sequence was obtained for a segment of the cytochrome b gene. Primers for
cytochrome b (Fig. 1) were designed by slight modification of the primer sequences
of Kocher et al. (1989) and Edwards et al. (1991).

L b) b3 bg
14992 - 15 841
}—————-—l
H ——— B —
by by b10

Fig. 1. Primer orientation for the amplification and sequencing of the cytochrome b gene. The thick line
delimits the region presented in this paper. The primer sequences are:

b, L14990 5-CCATCCAACATCTCAGCATGATGAA-3

b, H15298 5’AAACTGCAGCCCCTCAGAATGATATTTGTCCTCA-3’
b,PT. L15218 5-CGAGGGTTCTATTACGGCTCATACCT-3’

b, L15272 5-ATCCTCCTTCTAACCCTAATAGCAAC-3’

b L15567 5-AAATCCCATTCCACCCATACTAC-3’

b, H15695 5-AATAGGAAGTATCATTCGGGTTTAATG-3

bo. H15916 5-ATGAAGGGATGTTCTACTGGTTG-3

Letters L and H refer to light and heavy strands respectively. Numbers refer to the position of the base
at the 3’ end of the primer according to the chicken mitochondrial sequence (Desjardins and Morais,

1990).
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Samples were amplified with Taq polymerase (United States Biochemical Corpo-
ration) in an Inovonics™ thermal cycler using the following parameters: denatur-
ing: 92°C, 1 min; annealing: 53° C, 1 min; extension: 72°C, 1 min (35 cycles).
Double stranded amplification products were phenol extracted, precipitated with
95% ethanol (2.5 volumes) and 3 M sodium acetate (0.1 volumes) and resuspended
in 40 ul TE. Single primer amplification (Kessing et al., 1989) was performed on
double stranded products using the same cycling parameters (but using 40 cycles).
Products were phenol/chloroform extracted and precipitated with 7 M ammonium
acetate (0.33 volumes) and 95% ethanol (1.33 volumes). Single stranded DNA was
resuspended in 16 ul TE buffer and subjected to direct sequencing according to
Kessing et al. (1989).

Cloning and sequencing cloned products

Double stranded products amplified with cytbl and cytb2 primers were cloned
into M,; mp18. Briefly, M,; mp18 (2.75 mg) was digested with Smal (16 units) and
a double blunt end ligation performed using between 1.5 and 6.5 units of DNA
ligase, 0.5 mg of digested vector and approximately 0.25 mg of double stranded
fragment. Cloned inserts were sequenced by the dideoxy chain terminating proce-
dure of Sanger et al. (1979) using Sequenase® T7 DNA polymerase.

Tree building programs and analyses

Trees were generated using Apple Macintosh computers under maximum parsi-
mony using Swofford’s (1989) package PAUP or under maximum likelihood using
program DNAML +3.31 in the PHYLIP package of programs (Felsenstein, 1990).
Under maximum likelihood the values of the transition/transversion ratio, and the
relative evolutionary rates for codon positions 1, 2, and 3 were optimised using trial
trees and maximising the likelihood. Having optimised these parameters, data was
input to a global maximum likelihood search and the tree of maximum likelihood
recovered.

The weights to be applied to the different codon positions in parsimony analyses
should be based on the absolute evolutionary rates of the codon positions (Felsen-
stein, 1981), but these absolute rates are hard to determine in practice. It is clear
however that the third codon positions are liable to evolve much more rapidly than
the other two, and so changes at the third position should be devalued relative to
changes at the other two. We therefore followed two weighting schemes for
parsimony: weight the third positions to zero while weighting the others equally,
and using the reciprocals of the relative evolutionary rates determined from the
maximum likelihood analyses. A variety of transition/transversion rates, based on
the likelihood results, were used in conjunction with various character weights.

Parsimony trees were obtained either by heuristic or branch and bound methods.
Support for nodes was determined by bootstrapping the data set 1000 times.
Significance of a grouping may be regarded as established at the 95% level if 95%
of the bootstrap replicates contain this group in the case of a priori expectation, or
(100 — 5/(n — 2))% (where n = no. of species) of them for expectations generated
by the analyses themselves (Felsenstein, 1985). Trees retained under parsimony
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were compared under maximum likelihood using a modification of Templeton’s
(1983) test (Kishino and Hasegawa, 1989), which uses the variance of support for
a tree across sequence positions.

Results and discussion

The sequence data are given in Fig. 2. The 60 sites at which character state
information was missing were not included in parsimony analyses. Of the fully
characterized sites 187 proved informative (were shared, derived) according to
parsimony. Only these sites were used in parsimony reconstructions.

Likelihood was maximised for the set of all mtDNA sequences with a transition/
transversion ratio of 3.1 and relative evolutionary rates of 2, 1 and 17 for codon
positions, one, two, and three respectively.

The bootstrap parsimony result for all species is shown in Fig. 3, obtained using
a transition/transversion ratio of 3.1 and reciprocal weights. Similar results were
obtained when all codon positions were weighted equally, when third positions were
weighted to zero, or a transition/transversion ratio of 2.0 was used. The maximum
likelihood tree has the same topology and was used to determine the branch lengths
for Fig. 3.

The bootstrap results give strong support at the 95% level for bowerbird
monophyly (separation of the outgroups from the bowerbirds), as shown by the
98% occurrence of this prior expectation in the bootstrap replicates. The 100%
occurrence of a bird of paradise grouping also accords with prior expectation.
There is significant support for the monophyly of the two maypole builders,
Amblyornis and Prionodura and for the monophyly of the avenue builders. Within
the avenue builders there is significant support for the hypothesis that Prili-
norhynchus is the sister group of the Chlamydera genus. The nodes grouping
Scenopoeetes with maypole builders and that separating Ailuroedus from other
bowerbirds are not so strongly supported and indicate those relationships that
require further testing.

Trees derived from parsimony analyses were used to test particular results from
the bootstrapped parsimony analyses. These tests, in general, did not yield signifi-
cance at the 95% level according to the Kishino-Hasegawa-Templeton test, even
though the differences in likelihood were generally large. The exceptions were those
trees in which bowerbird or avenue builder monophyly was disrupted. Such trees
were found to be significantly worse than the tree of maximum likelihood (in
likelihood = —3971.01611). The failure to obtain the same level of support for
other nodes impels further caution about the parsimony results, but may also
indicate that the Kishino-Hasegawa-Templeton test is over-conservative.

General patterns

Our results show that bowerbirds are monophyletic and divergent from birds of
paradise as has been suggested by Sibley and Ahlquist (1987), and indicates a
common origin for all currently known bower building species after the divergence
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Scenopoeetes dentirostris stage
L:Chlam ydera maculata  avenue

95 Chiamydera nuchalis avenue

» Ptilonorhynchus violaceus avenue

81

Sericulus chrysocephalus avenue

Fig. 3. Bootstrap parsimony tree for eight bowerbird and three outgroup species, inferred from the
sequence data of Fig. 2 and using a transition/transversion ratio of 3.1 and weights calculated as the
inverse of the relative evolutionary rates for codon positions 1, 2 and 3 (see methods). Numbers at nodes
indicate the percentage of times a group occurred in 1000 bootstrap replicates. The topology of the
maximum likelihood tree was identical and was used to infer branch lengths. The most parsimonious tree
recovered by PAUP (length 63 212, tree not shown) differed from the above tree in the relative positions
of Ptilinorhyncus violaceus and Sericulus chrysocephalus. The topology shown above was thirty four steps
longer, but was not significantly worse according to the Kishino-Hasegawa test. Under the weighting
scheme used such a difference is equivalent to one extra step at a second codon position. The result
demonstrates monophyly of the bowerbird species and is indicative of intra-bowerbird affinities.
Topologically identical trees occurred with a variety of other parameter values, with bower-bird
monophyly consistently statistically significant and support for the other relationships of a similar order
to those shown here.

of Ailuroedus sp., the only genus within the family that is monogamous and does
not exhibit bower building or court clearing behaviour. The widespread occurrence
of monogamy in birds lends weight to the suggestion that the genus Ailuroedus
represents an ancestral condition and that the transition to polygyny and court
clearing occurred after their divergence.

The association of the avenue-building species and their ancestral sharing of one
major style of bower construction suggests, for this group, that phylogenetic
relationship is a good predictor of the general form of bowers. However, even
closely related species like the two Chlamydera species can differ radically in how
bowers are used in display (see Borgia and Mueller, 1991).

Another grouping consists of the genera Prionodura and Amblyornis. These species
show less obvious affinities in bower construction than the avenue builders.
Prionodura and Amblyornis have been associated by some because of their common
tendency to build bowers of sticks around saplings (Marshall, 1954a, b; Gilliard,
1969). However, Prionodura’s use of two saplings and an associated cross branch in
bower construction compared with Amblyornis’ single sapling bower has made the
putative claim of their close relationship open to question. The significant association
of these genera revealed by bootstrapping indicates that these species are related and
that the use of a sapling as part of a bower construction had a common origin.
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Plumage characters appear less reliable than bower characters in predicting
phylogenetic patterns. Both avenue and maypole building clades involve species
with crests yet none of the phylogenetic patterns suggest a common origin for the
crests. Three genera (Sericulus, Chlamydera and Amblyornis) include species with
and without well developed crests. Plumage color shows similar but less severe
variation. Both major clades include dimorphic and monomorphic species and one
genus (Amblyornis) includes both types of species. Some major changes in plumage
appear to be adaptive responses to environmental conditions (Borgia et al., 1985),
however the possibility of display trait elaboration due to runaway sexual selection
(see Kirkpatrick, 1986) or sensory exploitation (Burley, 1985; Ryan et al., 1990)
cannot be ruled out.

Transference

The pattern of divergence seen among the avenue builders accords with Gilliard’s
suggestion about the pattern of plumage evolution. In his transfer effect model
Gilliard suggests an ancestral condition in which brightly plumed species build
simply decorated bowers and more recently derived species exhibit dull plumage
and build elaborate bowers. Our results are consistent with this claim. The
monomorphic and drably plumed Chlamydera species build the most elaborate and
highly decorated of avenue bowers. This genus is more recently derived than
Sericulus or Ptilonorhynchus, two genera in which the males are vividly plumed and
the bowers simply constructed and decorated.

The different colored plumage seen among avenue building species (e.g. the
orange and black plumage of Sericulus and the irridescent blue-black plumage of
Ptilonorhynchus) may be independently derived. Alternatively, these bright
plumages may represent modifications of an ancestral dimorphism that enhanced
the signal quality of displays as these species moved into novel habitats (see Endler,
1990). In either case, Gilliard’s simple model of character loss and replacement may
have to be expanded to one that posits a general transfer of display functions from
bird to bower, but which also allows for modification and replacement of plumage
characters.

The evolution of bower building

The position of Ailuroedus in our phylogeny is consistent with the hypothesis that
dull male plumage and the absence of bower building are ancestral traits. It is not
clear, however, that the dull plumage and absence of a bower in Scenopoeetes are
ancestral. Like other bowerbird species male Scenopoeetes are polygynous and clear
and decorate display courts. Our phylogeny is consistent with two hypotheses: that
bower building evolved twice, or that it evolved once and was lost in the lineage
leading to Scenopoeetes. A comparison of the two most parsimonious pathways for
bower evolution shows no difference in the number of character state changes
needed to explain bower building (Fig. 4).

A cladistic analysis based on this character would suggest that these alternatives
be considered equally likely. There are, however, several reasons to favour the
second hypothesis. First, the evolution of bower building is a rare event, having
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Fig. 4. Two trees with display characters mapped onto bootstrap parsimony tree derived from mtDNA
sequences. The trees represent two equally parsimonious maps of display traits. Trait definitions are:
| =bower, 2=court clearing, 3= decorations (absent(A), small(S), or large(L)), 4= polygyny,
5 = lekking, 6 = continuous loud calls, 7 = copulations on court ((long(L) or short(S)), 8 = courtship on
courts (long(L) or short(S)), 9 = plumage dimorphism. Presence () or absence (—) of trait unless
otherwise noted. The trees differ with respect to traits 1 and 9, bowerbuilding and plumage dimorphism,
which undergo a reversal in tree A and show parallelism in B. The trees also differ in the degree of
association between traits thought to be functionally linked (e.g. bowers, small decorations, plumage
dimorphism, long courtships, brief copulation), and in the extent to which traits thought to be functional
equivalents are replaced (e.g. bowers and small decorations are replaced by lekking and large decora-
tions on the lineage leading to Scenopoeetes in tree A). Tree A is preferred because it does not require
episodes during which either one or another equivalent trait is not present.

occurred in only a single family of birds. Preadaptations for the evolution of
bowerbuilding, e.g. polygyny, court clearing and court decoration may have in-
creased the likelihood of multiple bower origins. If, however, these preadaptations
existed at the time the two major clades of bower-builders separated, it is not clear
why the evolution of bower building might be delayed in the lineage leading to the
maypole builders until after the divergence of Scenopoeetes. In addition, if bowers
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and lekking (and associated interactive vocal displays) have complementary func-
tions related to female choice among court clearing bowerbirds (see Borgia,
manuscript), then only the single origin hypothesis allows ancestral species to
exhibit a fully developed male display and mate choice mechanism. The alternative
would require that ancestral court clearers existed for a long period of their
evolutionary history with incomplete displays and then independently evolved the
final parts of their display. Given that bowers are central to much of the display of
these species this pattern of trait evolution seems unlikely.

Genera not represented

One genus of bowerbird, Archboldia, is not represented in our study. Archboldia,
like Scenopoeetes, builds a display court but fails to build a bower. The location of
Archboldia in our phylogeny should help resolve some of the questions discussed
above, e.g. is the absence of bower building ancestral in these lineages or the result
of reversals. The occurrence of an orange head crest in Archboldia associated with
the absence of a bower suggests the absence of compensatory change predicted by
the transference hypothesis.
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