
Dispersal, the movement of individuals among popu-
lations, is a critical ecological process (Ims and

Yoccoz 1997). It can maintain genetic diversity, rescue
declining populations, and re-establish extirpated popula-
tions. Sufficient movement of individuals between iso-
lated, extinction-prone populations can allow an entire
network of populations to persist via metapopulation
dynamics (Hanski 1991). As areas of natural habitat are
reduced in size and continuity by human activities, the
degree to which the remaining fragments are functionally
linked by dispersal becomes increasingly important. The
strength of those linkages is determined largely by a prop-
erty known as “connectivity”, which, despite its intuitive
appeal, is inconsistently defined. At one extreme,
metapopulation ecologists argue for a habitat patch-level
definition, while at the other, landscape ecologists insist
that connectivity is a landscape-scale property (Merriam
1984; Taylor et al. 1993; Tischendorf and Fahrig 2000;
Moilanen and Hanski 2001; Tischendorf 2001a;
Moilanen and Nieminen 2002). Differences in perspec-
tive notwithstanding, theoreticians do agree that connec-
tivity has undeniable effects on many population
processes (Wiens 1997; Moilanen and Hanski 2001). 

It is therefore desirable to quantify connectivity and
use these measurements as a basis for decision making.
Currently, many reserve design algorithms factor in some
measure of connectivity when weighing alternative
plans (Siitonen et al. 2002, 2003; Singleton et al. 2002;
Cabeza 2003). Consideration of connectivity during the
reserve design process could highlight situations where it
really matters. For example, alternative reserve designs
that are similar in other factors such as area, habitat
quality, and cost may differ greatly in connectivity
(Siitonen et al. 2002). This matters because the low-con-
nectivity scenarios may not be able to support viable
populations of certain species over long periods of time.
Analyses of this sort could also redirect some project
resources towards improving the connectivity of a
reserve network by building movement corridors or
acquiring small, otherwise undesirable habitat patches
that act as links between larger patches (Keitt et al.
1997). Reserve designs could therefore include the
demographic and genetic benefits of increased connec-
tivity without substantially increasing the cost of the
project (eg Siitonen et al. 2002).

If connectivity is to serve as a guide, at least in part, for
conservation decision-making, it clearly matters how it is
measured. Unfortunately, the ecological literature is
awash with different connectivity metrics. How are land
managers and decision makers to efficiently choose
between these alternatives, when ecologists cannot even
agree on a basic definition of connectivity, let alone how
it is best measured? Aside from the theoretical perspec-
tives to which they are tied, these metrics differ in two
important regards: the type of data they require and the
level of detail they provide. Here, we attempt to cut
through some of the confusion surrounding connectivity
by developing a classification scheme based on these key
differences between metrics.
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Connectivity is an important but inconsistently defined concept in spatial ecology and conservation biology.
Theoreticians from various subdisciplines of ecology argue over its definition and measurement, but no con-
sensus has yet emerged. Despite this disagreement, measuring connectivity is an integral part of many
resource management plans. A more practical approach to understanding the many connectivity metrics is
needed. Instead of focusing on theoretical issues surrounding the concept of connectivity, we describe a data-
dependent framework for classifying these metrics. This framework illustrates the data requirements, spatial
scales, and information yields of a range of different connectivity measures. By highlighting the costs and
benefits associated with using alternative metrics, this framework allows practitioners to make more
informed decisions concerning connectivity measurement. 
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In a nutshell:
• Measures of connectivity differ in their data requirements and

informational yield
• The commonly used connectivity metrics can be classified

according to their different strengths and weaknesses
• This framework can be used to decide which connectivity met-

rics to calculate, given particular datasets or, conversely, which
type of data to collect, given a particular metric
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� Connectivity comes in multiple flavors
Connectivity depends on the interaction between partic-
ular species and the landscapes in which they occur
(Schumaker 1996; Wiens 1997; Tischendorf and Fahrig
2000; Moilanen and Hanski 2001). Put another way, a
single landscape or habitat patch will possess different
degrees of connectivity, depending on the behaviors,
habitat preferences, and dispersal abilities of the species
being considered (Johnson and Gaines 1985; Figure 1).
Strategies exist for developing multi-species connectivity
metrics (Fagan and Calabrese in press), but here we stick
to the standard, single species view. We distinguish three
classes of connectivity metrics, based on interactions
between focal species and the landscape. Listed in
increasing order of detail, they are: structural, potential,
and actual connectivity (Figure 2). Structural connectiv-
ity is derived from physical attributes of the landscape,
such as size, shape, and location of habitat patches, but
does not factor in dispersal ability (Figure 2a). Potential
connectivity combines these physical attributes of the
landscape with limited information about dispersal ability
to predict how connected a given landscape or patch will
be for a species (Figure 2b). Examples of limited dispersal
information include estimates of mobility derived from
body size or energy budgets (Cresswell et al. 2000; Porter
et al. 2000), or measurements with little spatial detail,
such as mean or maximum recapture distances from
mark–recapture studies (Clark et al. 2001). Actual con-
nectivity relates to the observation of individuals moving
into or out of focal patches, or through a landscape, and
thus provides a concrete estimate of the linkages between
landscape elements or habitat patches (Figure 2c).

To facilitate classification of connectivity metrics
according to their data-dependence, the various types of
data used to estimate connectivity are simplified into six
frequently encountered categories (see below). Within

each data category, the spatial scales at which the metrics
are usually calculated are simplified to four levels: point
occurrences, individual habitat patches, landscape classes,
and entire landscapes (Figure 3). Our approach here is to
sketch the relationships between the three types of con-
nectivity described above and the basic data requirements
of the various connectivity metrics (Table 1). We also dis-
cuss the common modifications to many connectivity
metrics and the scale-dependence of connectivity.

� The data-dependent framework

Nearest neighbor distance: patch occupancy data
and interpatch distance

Field surveys of a species’ occupancy pattern in a habitat
patch and measurements of the distance to the nearest
occupied patch provide a simple, patch-level structural
connectivity metric. Interpatch distance is, technically, a
patch isolation measure, and connectivity is its inverse.
Though simple to obtain, distance to the nearest occupied
neighbor is a crude connectivity metric. Moilanen and
Nieminen (2002) demonstrated the poor performance of
this metric through a meta-analysis of published studies
that quantified connectivity, and by using various connec-
tivity metrics to predict colonization events in two detailed
empirical butterfly metapopulation datasets. Overall, they
found that nearest neighbor measures were less likely to
detect a significant effect of connectivity and were more
sensitive to sample size than were other, more complex
connectivity metrics. Bender et al. (2003) obtained similar
results using a computer-simulated dispersal process on
both real – derived from a geographic information system
(GIS) – and artificially generated landscapes. They found
that nearest neighbor distance was consistently the worst
or second worst performer of the four proximity indices
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Figure 1. (a) A pronounced edge in semi-arid grassland habitat of the Chiricahua Mountains, Arizona, induced by different grazing
practices. Habitat edges like this represent semi-permeable barriers, disrupting the dispersal behaviors of some species but not others.
Interspecific differences in edge responses are one reason why ecologists need to be alert to the species-specific nature of connectivity
metrics. (b) A more complex landscape near Würzburg, Germany. Different species may have different perceptions about which
landscape elements are usable. For example, some may be restricted to the forest fragments while others will move freely through forest
as well as vineyards.

(a) (b)
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they studied, and that it performed especially
poorly when patch size and shape were varied
(Bender et al. 2003).

The weak performance of nearest neighbor
distance can be attributed to several factors.
First, this metric counts only the contribution
of the patch nearest to the focal patch, thus
ignoring how all other patches affect the con-
nectivity of the focal patch (Bender et al.
2003). Furthermore, in its most basic form, the
nearest neighbor measure includes no informa-
tion about the population size of the focal
species in the nearest patch. Finally, no knowl-
edge of the species’ dispersal ability is incorpo-
rated into the metric. Despite these limita-
tions, the nearest neighbor distance is one of
the most commonly used connectivity metrics
(Moilanen and Nieminen 2002; Bender et al.
2003). This is most likely due to its simplicity
and modest data requirements. Unfortunately,
these advantages do not adequately compen-
sate for its limitations.

Spatial pattern indices: spatially explicit
habitat data

Spatially explicit habitat data are often
remotely sensed, cover a large area, and are
represented in either raster or vector form in a
GIS. Spatial pattern indices quantify the
number, size, extent, shape, or aspects of the
spatial arrangement of landscape elements.
The use of these indices as connectivity met-
rics relies on the assumption that the spatial
patterns these indices quantify actually affect
species’ ability to move through the land-
scape. Examples of spatial pattern metrics
include number of patches, patch area, core
area, patch perimeter, contagion, perime-
ter–area ratio, shape index, fractal dimension, and patch
cohesion (Haines-Young and Chopping 1996; Schumaker
1996). The increasing availability of this type of data and
software packages such as Fragstats (McGarigal et al.
2002) make the metrics in this category relatively easy to
calculate. Although spatial pattern indices are sometimes
assumed to represent actual connectivity, we consider
them estimators of structural connectivity because they do
not incorporate dispersal data. The lack of dispersal data
does not, however, preclude the possibility that these
indices could show predictable relationships with actual
connectivity. There has been little empirical research
regarding this possibility, but several simulation modeling
studies have explored the relationships between spatial
pattern indices and dispersal success. For example,
Schumaker (1996) demonstrated that shape index and
patch cohesion were the best predictors of dispersal suc-
cess, while fractal dimension, number of patches, patch

area, core area, patch perimeter, contagion, and perime-
ter–area ratio were, at best, weakly correlated with disper-
sal success. Similarly, Tischendorf (2001b) found that,
while some spatial pattern indices were strongly correlated
with simulated dispersal success, 68% of the statistical
relationships between the 26 metrics and three measures
of dispersal success considered were inconsistent when
landscape structure and dispersal behavior were varied.
The simulation results therefore suggest that relationships
between spatial pattern indices and dispersal success
might not generalize well across landscapes or species.

A potential advantage of spatial pattern indices is that
they could be used to quickly characterize connectivity
for large areas. However, the weak or inconsistent rela-
tionships between spatial pattern indices and dispersal
success suggest that further research is required before
these indices can be relied upon to estimate actual con-
nectivity. The lack of empirical work in this area only
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Higher connectivity Lower connectivity

Connected

Connected Connected
Not connected

Figure 2. Schematic representation of the three types of connectivity.
(a) Structural connectivity depends mainly on physical attributes of landscape
elements, such as spatial proximity. Therefore the elements in the left column
have higher structural connectivity than those in the right column. (b) Potential
connectivity depends on physical attributes, but also on the dispersal ability of
focal species. The red and blue bars represent measures of dispersal ability for
two hypothetical species. If the distance between patches is greater than this
measure of dispersal ability, the patches are not connected. Thus, the landscape
on the left is connected for both species while the landscape on the right is
connected for the blue species but not for the red species. (c) Actual
connectivity is based on observed movement pathways. While factors considered
in the other two classes of connectivity metrics certainly influence actual
connectivity, movement must be observed or quantified. The left and right
columns represent different observed pathways that would not necessarily be
predicted by the structural or potential connectivity approaches. Thicker arrows
indicate higher movement rates, and thus, higher actual connectivity.
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underscores this point. As several authors have noted
(Schumaker 1996; Tischendorf 2001b; Fortin et al.
2003), focusing on the relationships between the spa-
tial pattern that these metrics quantify and the
underlying ecological processes that influence con-
nectivity, such as demographics, dispersal, and behav-
ior, may be the most effective way to develop these
metrics further.

Scale–area slope: point- or grid-based
occurrence data
Another approach to quantifying structural
connectivity can be used when records of
species’ spatial occurrences are available,
but the locations of actual habitat patches
are unknown. Datasets fitting into this cat-
egory include those assembled from
museum records or long-term surveys of
species presence or absence, where patch
boundaries are not known or may have
changed since the data were collected.
This approach builds from individual
occurrences of a species to a landscape-
level connectivity metric known as the
“scale–area slope”. Both point data, where
considerable spatial detail is available, and
grid data, where spatial descriptions are less
precise, can be used to estimate structural
connectivity based on the slope of a
scale–area curve (Kunin 1998; Fagan et al.
2002). Scale–area slopes are derived by
dividing a landscape into a series of equal-
sized grid cells at several map resolu-
tions, with a fixed number of fine-resolu-
tion cells inside each coarser-resolution
cell. Presence or absence of the focal
species in each cell at each resolution is

determined and the map area occupied by the species
(assuming a cell with at least one incidence record is occu-
pied) is plotted against grid cell size at each map resolution.
Scale–area slope is then estimated via power–law regres-
sion. Steep scale–area slopes characterize species that have
fragmented distributions, whereas shallow slopes identify
species with less fragmented (ie more contiguous) spatial
occurrences. A shallow (ie numerically small) scale–area
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Figure 3. A simplification of the spatial scales discussed in this paper, based on a
recent landcover classification for Jamaica (Evelyn and Camirand 2003). The
entire inset represents a 19 054.74-ha landscape scale. Eight landcover classes are
represented within the landscape, as described by the legend. For example, closed
broadleaf forest, in dark green, represents a single landcover class. An individual
patch within the broadleaf forest class is outlined in red and highlighted with a red
arrow. The blue dot highlighted by the blue arrow represents a hypothetical point
occurrence of a focal species. Land classification provided by the Forestry
Department of Jamaica.

Table 1. A summary of the data-dependent classification framework for connectivity metrics 

Type of connectivity/
Connectivity metrics level of detail Habitat-level data Species-level data Methodology

Nearest neighbor distance Structural Nearest neighbor distance Patch occupancy Patch-specific field surveys

Spatial pattern indices Structural Spatially explicit None GIS/remote sensing

Scale–area slope Structural None Point- or grid-based Occurrence databases,
occurrences presence/absence

sampling 

Graph-theoretic Potential Spatially explicit Dispersal ability GIS/remote sensing +
dispersal studies

Buffer radius, IFM Potential Spatially explicit, including Patch occupancy Multi-year, patch-specific
patch area and dispersal ability field surveys or single-year,

patch occupancy study with
dispersal study

Observed emigration, Actual Variable, depends on Movement pathways Track movement pathways
immigration, or dispersal methodology or location-specific (specific methods depend
rates dispersal ability on study organism), mark–

release–recapture studies

Closed broadleaf forest
Disturbed broadleaf forest
Fields within disturbed broadleaf forest
Dry forest
Bamboo (invasive)
Pine plantation
Sugarcane/banana plantation
Crop fields

N

W E
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slope would therefore be associated with higher structural
connectivity.

The use of the scale–area slope as a connectivity metric
assumes that proximity is the major determinant of the
connectivity among occurrences. Such an assumption is
clearly justified in certain circumstances. For example,
Fagan et al. (2002) demonstrated that for Sonoran Desert
fishes, species that were historically distributed more
compactly (ie species with shallow scale–area slopes)
were at a distinct advantage when it came to weathering
the ensuing decades of anthropogenic alterations to their
habitats and landscape. In contrast, species with steep
scale–area slopes, whose distributions were more frag-
mented historically, were at greater risk of local extinc-
tion. Despite this promising result, the relationships
between scale–area slope and various measures of actual
connectivity have not yet been established. Although
scale–area approaches do not provide a direct linkage
between connectivity and dispersal, the techniques can
help to identify the spatial scales over which processes
affecting connectivity are most important.

Graph-theoretic measures: spatially explicit habitat
data with dispersal data

Graph-theoretic measures combine spatially explicit habi-
tat data derived from a GIS with data acquired from inde-
pendent studies on the dispersal biology of species.
Inclusion of species-specific dispersal data represents a
substantial increase in data requirements, but allows these
metrics to go beyond structural connectivity and address
potential connectivity. In their most basic form, graph-
theoretic approaches entail making a mathematical
“graph” of a network of habitat patches for a species that
incorporates information on the spatial arrangement of
patches as well as patch attributes (Cantwell and Forman
1993; Keitt et al. 1997; Bunn et al. 2000; Urban and Keitt
2001). The graph is simply a means of summarizing the
spatial relationships between landscape elements in a con-
cise way. Next, potential connections between all pairwise
combinations of habitat patches are established by consid-
ering the dispersal ability of the focal species. If the dis-
tance between a given pair of patches is less than or equal
to the measure of dispersal ability used, the patches are
considered connected. Measures of dispersal ability typi-
cally include a fixed critical dispersal distance (Keitt et al.
1997; D’Eon et al. 2002) or a random draw from a dispersal
kernel. A fixed critical distance represents the distance
after which a species’ probability of dispersal is assumed to
decline rapidly (van Langvelde 2000), while a dispersal
kernel is a function describing the relationship between
dispersal distance and a species’ probability of dispersal (eg
Kot et al. 1996; Havel et al. 2002). These potential con-
nections are depicted on the graph as lines (“edges” in the
terminology of graph theory) drawn between each pair of
connected patches.

After establishing pairwise connections, graph-theo-

retic approaches scale up to consider the connectivity of
the entire patch network (landscape level), using metrics
including correlation length, distance to cluster edge,
number of graph components, and diameter of the largest
graph component (Keitt et al. 1997; Urban and Keitt
2001; D’Eon et al. 2002). These metrics are different ways
of quantifying how connected the graph is overall. For
example, a graph that had one large cluster of intercon-
nected patches would be considered to have higher con-
nectivity than a graph that had several small, isolated
clusters of interconnected patches. An advantage of these
methods is that graph operations that simulate the
destruction of habitat patches or dispersal corridors can
be used to rank habitat patches by their contributions to
landscape-level connectivity (Keitt et al. 1997). The
graph-theoretic approach could therefore allow land
managers to make decisions based on which patches are
most critical to landscape connectivity.

Buffer radius and incidence function metrics:
spatially explicit patch occupancy, patch area, and
dispersal data

Spatially explicit patch occupancy data are usually
obtained by directly sampling habitat patches for a species
of interest and spatially referencing patch locations. With
such data, one can calculate buffer radius or incidence
function measures (see below) of patch-level, potential
connectivity, depending on assumptions about the disper-
sal biology of the species in question. These metrics incor-
porate patch occupancy information, usually for a large
number of patches. Such data allow the potential contri-
bution of each patch to be assessed by its occupancy status
as well as by proxies for population size, such as area, if it is
occupied. The result of this extra information is that these
indices can give a more detailed estimate of patch-level
potential connectivity than other metrics.

For buffer radius measures, patch-occupancy data for all
patches that lie within a fixed distance, or “buffer radius”,
of the focal patch are required. The connectivity of a
patch is a function of the number and areas of all occu-
pied patches that lie within the buffer radius. Though
buffer radii are often arbitrarily selected, Moilanen and
Nieminen (2002) have shown that the performance of
these measures is sensitive to the buffer radius chosen,
suggesting that incorporation of even the most basic dis-
persal information could substantially improve the per-
formance of these metrics.

A similar set of connectivity metrics derive from the
incidence function metapopulation model (IFM)
(Hanski 1994; Hanski et al. 1996). These measures
require spatially explicit patch-occupancy data for a large
number of patches in a metapopulation, and also a disper-
sal kernel describing how the focal species’ probability of
dispersal decays with distance. The dispersal kernel can
be parameterized either with independent data on the
dispersal ability of the focal species, or by model fit to
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patch-occupancy data. If such data are used to estimate
dispersal ability, it is desirable to have more than one year
of data to obtain robust parameter estimates (Hanski
2001). The basic IFM connectivity measure essentially
sums the potential contribution of all occupied patches in
a metapopulation, weighted by area and distance, to the
connectivity of a focal patch.

Buffer and IFM metrics can still be calculated in the
absence of patch-occupancy data, but give a less detailed
estimate of potential connectivity. This method, called
the “connectivity of landscape elements” (Moilanen and
Hanski 2001), is similar to the graph-theoretic
approaches described above. When patch-occupancy
data are available, buffer radius and IFM measures pro-
vide detailed descriptions of patch-level potential con-
nectivity, but do not necessarily scale up to landscape lev-
els. However, if sufficient data are available to
parameterize a stochastic patch-occupancy metapopula-
tion model (eg the IFM ), one could then calculate the
“metapopulation capacity” of the study system (Hanski
and Ovaskainen 2000; Ovaskainen and Hanski 2001).
Although connectivity is not directly quantified by
metapopulation capacity, it may be a more useful quantity
than landscape-level connectivity per se because it quan-
tifies a landscape’s potential to maintain a viable
metapopulation over time.

Observed emigration, immigration, or dispersal
rates: individual movement data

Data on the individual movements of organisms provide
the most direct estimate of actual connectivity. Many
methods exist for obtaining such data (Ims and Yoccoz
1997), but often these types of studies are too labor inten-
sive to be conducted at even moderately large, let alone
landscape, scales. Depending on the taxa in question,
detailed tracking of the movement pathways of individual
animals via radiotelemetry or other methods (Gillis and
Krebs 1999, 2000; Turchin 1998), mark–release–recapture
studies (Southwood 1978; Sutherland 1996), or mass
mark–recapture methods (where individuals do not have a
unique marking) may be used. In addition, measurements
of patch-level immigration or colonization rates for
unmarked animals can, by themselves, serve as a connec-
tivity metric (van Langevelde 2000). This approach is dif-
ficult in practice, however, because immigration or colo-
nization rates must be sufficiently high that useful data can
be collected over a reasonable period of time. Despite the
difficulty, many techniques for the direct measurement of
movement can be applied to a variety of taxa, and these
methods provide direct information about short-term dis-
persal. Alternatively, to quantify the extent of past disper-
sal over long time scales, metrics based on genetic data (eg
Andreassen and Ims 2001) could be used.

Although landscape-level estimates of actual connec-
tivity are possible for wide-ranging species that can be
radio tracked – eg Florida panthers (Meegan and Maehr

2002) – the data-intensive nature of direct measurement
methods will generally limit the spatial scales to which
they can be applied. Still, in situations where movement
data are already available or only a few habitat patches are
of interest, quantifying emigration, immigration, or dis-
persal rates provides a detailed estimate of how well par-
ticular patches are connected in a fragmented landscape.

�Modifications

For many of the metrics discussed here, additional data,
not included in the basic definition of the metric, can be
incorporated to improve performance. The most common
modification is weighting patch contributions to connec-
tivity by area or some other proxy for population size.
Such “area-informed” metrics generally perform better
than those that lack area considerations (Moilanen and
Nieminen 2002; Bender et al. 2003; Tischendorf et al.
2003). Additionally, parameters that scale patch emigra-
tion or immigration according to patch area or popula-
tion size can be used to capture some aspects of the dis-
persal behavior of species (Moilanen and Nieminen
2002). For example, for a given habitat area or population
size, individuals of different species may not be equally
willing to leave or enter habitat patches (Haddad 1999).
Another commonly modified component of many con-
nectivity metrics is the definition of interpatch distance.
While it is the simple Euclidean distance most often used,
other distance measures, such as least-cost movement
pathways, can be used when appropriate (Bunn et al.
2000). Alternate movement pathways may be especially
important to assess connectivity when landscape features
such as rivers or mountains force organisms to disperse
along pathways not well described by Euclidean distances
(Dunham and Rieman 1999; Fagan 2002). In addition
to the quantity of data, the effects of data quality on met-
ric performance should also be considered. Such a discus-
sion is beyond the scope of this paper, but Ruckelshaus
et al. (1997, 1999) and Moilanen (2002) provide effective
starting points.

� Scale dependence

Two issues of scale dependence arise when considering
connectivity. First, on which scale should connectivity be
defined? Though several papers have debated this point
(Tischendorf and Fahrig 2000; Tischendorf 2001a;
Moilanen and Hanski 2001), there is no evidence that
connectivity should be limited to a particular spatial scale.
This leads to the second issue: connectivity will change
with spatial scale. How does one decide which scale is
most appropriate for a particular problem? Clearly, the dis-
persal ability of the species imposes a relevant scale on the
landscape (Wiens 1997), but dispersal ability is often
unknown or poorly known. In such cases, explicitly calcu-
lating connectivity at a series of nested spatial scales and
examining how connectivity changes as a function of
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scale is likely to provide a more robust picture
of connectivity for the study area. Many of
the approaches to connectivity detailed in
this review have, at least to some degree, uti-
lized this method. Tischendorf (2001b)
showed that spatial pattern indices were gen-
erally better predictors of dispersal success
when calculated at the landscape element
(class) level than at the landscape level. The
scale–area approach of Kunin (1998) and
Fagan et al. (2002) is defined by a nested spa-
tial scale methodology, scaling up from indi-
vidual occurrences to the entire landscape.
Similarly, graph theory naturally lends itself
to such multi-scale analyses and allows the
integration of patch-level and class- or land-
scape-level connectivity (Keitt et al. 1997;
Urban and Keitt 2001). Though not purely a
connectivity measure, metapopulation capac-
ity accomplishes a similar scaling-up from
patch to class or landscape levels by focusing
on how landscape structure, which affects
patch-level connectivity, influences popula-
tion persistence for particular species (Hanski
and Ovaskainen 2000; Ovaskainen and Hanski 2001).
Such multiscale methodologies could be used to look for
connectivity thresholds (Keitt et al. 1997) or to assess the
sensitivity of connectivity estimates to assumptions about
the dispersal ability of the focal species.

� The tradeoff between data requirements and
realism

Across the different connectivity metrics, a tradeoff exists
between information content and data requirements
(Figure 4). For example, the nearest neighbor measures
and spatial pattern indices do not require extensive data
to calculate, but provide only a crude estimate of struc-
tural connectivity. In contrast, buffer radius and IFM
approaches provide very detailed estimates of potential
connectivity at the individual patch level, but are
extremely data-intensive. Likewise, the direct observation
methods provide the only estimates of actual connectivity,
but are, again, applicable mainly to small scales and are
extremely data-intensive. Given the tradeoff between
information content and data requirements, the graph-
theoretic approaches may possess the greatest benefit to
effort ratio for conservation problems that require charac-
terization of connectivity at relatively large scales. These
measures provide a reasonably detailed picture of potential
connectivity, but have relatively modest data require-
ments. When habitat patches cannot be reliably delim-
ited, the scale–area approach might be the only option.
However, the relationship between scale–area slopes and
actual connectivity needs to be better developed.

Unfortunately, no all-purpose method exists for choos-
ing which of the many connectivity metrics to use in

addressing real-world problems. Future research will
undoubtedly illustrate which of these metrics perform
best and which need to be left by the wayside. However,
for many urgent conservation decisions, we do not have
the luxury of waiting until a consensus is reached. Our
goal in developing this classification system was to give
non-theoreticians a starting point from which to choose
appropriate connectivity metrics. Hopefully, knowledge
of data requirements and informational detail, as well as
the strengths and weaknesses of different approaches to
connectivity, will allow practitioners to invest limited
funds and efforts wisely when connectivity is used to eval-
uate alternative conservation strategies.
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fications” section may alter the position of various metrics in the hierarchy, but in
general, the tradeoff between information content and data requirements holds.
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