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SUMMARY

 

The comparative analysis of homologous char-
acters is a staple of evolutionary developmental biology and of-
ten involves extrapolating from experimental data in model
organisms to infer developmental events in non-model organ-
isms. In order to determine the general importance of data ob-
tained in model organisms, it is critical to know how often and
to what degree similar phenotypes expressed in different taxa
are formed by divergent developmental processes. Both com-
parative studies of distantly related species and genetic analy-
sis of closely related species indicate that many characters

known to be homologous between taxa have diverged in their
morphogenetic or gene regulatory underpinnings. This process,
which we call “developmental system drift” (DSD), is apparently
ubiquitous and has significant implications for the flexibility of
developmental evolution of both conserved and evolving char-
acters. Current data on the population genetics and molecular
mechanisms of DSD illustrate how the details of developmental
processes are constantly changing within evolutionary line-
ages, indicating that developmental systems may possess a
great deal of plasticity in their responses to natural selection.

 

INTRODUCTION: WHEN HOMOLOGY IS ONLY 
SKIN DEEP

 

The study of homology has been the major theme behind the
current re-synthesis of developmental and evolutionary biol-
ogy (Bolker and Raff 1996; Abouheif 1997; Wagner 1999).
It becomes important then to know whether homology in the
cells, molecules, and pathways that underlie development
typically involves conservation of function, and to what de-
gree homology in the final phenotype indicates that the ma-
chinery producing it in different lineages has remained the
same. It is reasonable to suppose that pathways underlying
homologous characters are largely static, given that conserv-
ing a complex solution to an adaptive problem is simpler
than reinventing the solution repeatedly (the “if it ain’t
broke, don’t fix it” maxim). However, numerous recent stud-
ies have revealed the surprising result that developmental
pathways do in fact diverge through time, even with no ac-
companying change in the phenotypic outcome. This pro-
cess, which we call “developmental system drift” (DSD) is
illustrated in Figure 1A. Here, the term “drift” is clearly dis-
tinct from genetic drift, but nevertheless is appropriate be-
cause, as with genetic drift, chance and not selection deter-
mines the details of how developmental systems change
under DSD.

Here, we review recent studies in both developmental and
evolutionary biology, which together suggest that over brief
or long evolutionary periods, DSD can be routinely ob-
served. Further, the relationship between time of divergence
and the extent of DSD is complex and seems to depend on

the sensitivity of various developmental pathways to genetic
change. Pathways related to reproduction show constant and
rapid divergence, as revealed by genetic analysis of specia-
tion. On the other hand, developmental analyses of homolo-
gous traits in distantly related taxa and genetic studies of
closely related species indicate that pathways underlying
morphogenesis diverge more slowly and stochastically. Data
on the molecular mechanisms of DSD, in combination with
information from cases of convergent evolution, provide a
new view of the importance and generality of flexibility and
diversity that will need to be integrated with the current,
well-established emphasis on conservation and constraint in
evolutionary developmental studies.

 

DEVELOPMENTAL SYSTEM DRIFT

 

Hypotheses on the homology of morphological features usu-
ally begin with straightforward observations of similarity,
and may be further bolstered by embryological or gene ex-
pression studies of their ontogeny. Because these analyses
utilize gross phenotypic similarities and, typically, data from
relatively few genes (e.g., major developmental regulatory
proteins), they understandably do not emphasize the subtle
differences in developmental mechanisms that are indicative
of DSD. This may be because such features are either not
visible, due to incomplete gene expression profiles, or not of
direct interest, as in phylogenetic analyses at macroevolu-
tionary levels. Moreover, features that are identical in
closely related species are tacitly assumed to have identical
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developmental underpinnings. However, recent studies of
developmental and evolutionary genetics, concentrating on
both subtle and major details of phenotype and ontogeny at
both small and great phylogenetic distances, are now reveal-
ing that DSD is a very general phenomenon.

At the short end of the time scale, there is a great deal of
evidence of DSD between recently diverged species. Many
studies indicate that divergence of developmental homeosta-
sis leads to an increased fluctuating asymmetry (e.g., be-
tween meristic traits on the left and right sides of the body)
in species hybrids (Felley 1980; Graham and Felley 1985;
Leary et al. 1985). In addition to indicating DSD in homeo-
static properties, interspecific genetic studies have found that

system drift can affect very specific morphological traits,
which are identical in the parental species but show aber-
rations in species hybrids. In hybrids between 

 

Drosophila
melanogaster

 

 and 

 

D. simulans

 

, thoracic bristles with con-
served patterns in the parental species are often missing (Fig.
2). Takano (1998) has found that these bristle losses are
not seen in hybrids between 

 

D. simulans

 

 and a closer rela-
tive, 

 

D. mauritiana.

 

 This suggests that the appearance of
morphological anomalies may be a function of the time of di-
vergence of the two species. Recently, Takano-Shimizu (2000)
reported that one X-linked locus accounted for greater than
half of the variation between 

 

D. simulans

 

 strains showing
high and low bristle number loss, and that this locus showed

Fig. 1. Flexibility in the development of similar traits can occur by two different modes. (A) By developmental system drift (DSD), an
ancestral trait (oval) is conserved but the developmental mechanisms (arrows) by which that trait is produced diverge. In the left-hand
lineage, the first step has been altered (indicated by an arrow with different color). In the right-hand lineage, an additional pathway step
has been recruited. (B) By convergence, distinct lineages can independently evolve a similar trait (ovals) from non-identical original
traits (different shapes) in their respective ancestors. The developmental pathways involved in convergence can be similar or different.
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significant epistatic interactions with autosomal loci. An-
other example of the failure of developmental systems in hy-
brids to produce wild-type morphology that is identical in
parental species occurs in the species pair 

 

Drosophila subob-
scura

 

/

 

madierensis

 

, whose hybrids show high frequencies of
partial transformation of second (T2) and third thoracic (T3)
segments toward the first thoracic segment (T1). These are
particularly noticeable due to the presence of male-specific
bristle patterns in T2 and T3 legs of ectopic sex combs,
which are normally only found on T1 legs (Khadem and
Krimbas 1991; Papaceit et al. 1991). A genetic analysis of
this hybrid anomaly indicated that at least five loci contrib-
ute to the loss of sex comb suppression in T2 and T3, and
maternal effects may also be involved (Papaceit et al. 1991).
These studies in 

 

Drosophila

 

 indicate that morphological
anomalies in hybrids can have quite different genetic archi-
tectures, and the traits most strongly affected by DSD can
differ markedly between taxa.

DSD has also been revealed by developmental analyses
of highly conserved structures fundamental to animal body

plans. In the nematode genera 

 

Caenorhabditis

 

 and 

 

Pristion-
chus

 

, the vulva is produced by a group of ventral epidermal
cells that express the homeotic gene 

 

lin-39.

 

 In 

 

C. elegans

 

,
nonvulval cells fuse with the epidermis, but in 

 

P. pacificus

 

the homologous cells undergo programmed cell death. Eiz-
inger and Sommer (1997) found that although in both spe-
cies 

 

lin-39

 

 mutants are vulvaless, in 

 

C. elegans

 

 the cells that
would normally give rise to the vulva instead adopt the cell
fusion fate of nonvulval cells; however, in 

 

P. pacificus

 

 the
vulvaless phenotype is caused by apoptosis of these cells.
Thus, although 

 

lin-39

 

 promotes nonvulval fate in both spe-
cies, and in this respect has not undergone functional diver-
gence, the intrinsic fate of ventral epidermal cells in these
two species has diverged since the time of their common an-
cestor.

Another example in which a fundamental, conserved fea-
ture of an animal body plan has apparently diverged in its de-
velopmental pathway is chordate neurulation, the process in
which dorsal ectoderm is specified to produce the neural
tube. In all vertebrates studied thus far, a signaling center in

Fig. 2. Bristle loss in hybrids of Drosophila melanogaster and D. simulans. (A) D. melanogaster male showing the wild type thoracic bris-
tle pattern, which is identical in D. simulans (not shown). (B) F1 male hybrid between D. simulans and D. melanogaster showing loss of
many thoracic bristles. Images courtesy of T. Takano.
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the mesoderm (the Spemann-Mangold organizer in amphib-
ians, the node in amniotes, and the dorsal shield in teleost
fish) is required to induce the neural plate from the surround-
ing non-neural ectoderm. Such a fundamental process would
seem to be rigidly constrained, yet surprising distinctions
have emerged between anamniote (fish and frog) and am-
niote (chick and mouse) model organisms (reviewed by La-
Bonne and Bronner-Fraser 1999). In anamniotes, overex-
pression studies in 

 

Xenopus

 

 (reviewed by Weinstein and
Hemmati-Brivanlou 1997) and mutations in zebrafish (Ham-
merschmidt et al. 1996; Nguyen et al. 1998; Dick et al. 2000)
support a model in which inhibition of BMP family signaling
molecules is necessary and sufficient to induce neural fates.
However, although BMP antagonists are expressed in the
node of amniotes (Connolly et al. 1997), misexpression ex-
periments in chick (Streit et al. 1998) and knockouts in
mouse of either BMP antagonists or BMPs themselves (Mc-
Mahon et al. 1998; Zhang and Bradley 1996; Dudley et al.
1995; Winnier et al. 1995) cause no obvious defects in neural
specification. This suggests that in amniotes other factors
have evolved roles in the organizer that either replace or
function redundantly with BMP signaling to specify the neu-
ral plate.

Limb development also shows hints of underlying diver-
sity among vertebrate lineages in what is thought to be a
highly conserved developmental genetic program. One case
involves Radical-fringe (R-fng), one of a family of extracel-
lular proteins that bind Notch during cell signaling (reviewed
by Wu and Rao 1999). R-fng is expressed at the dorsal-ven-
tral boundary of the limb bud of both mouse and chick,
where it is thought to direct the formation of the apical ecto-
dermal ridge (AER) (Johnston et al. 1997). Genetic manipu-
lations in different taxa, however, suggest that the role of
R-fng may have diverged during amniote evolution. R-fng
has been shown to be sufficient to induce AER formation in
chickens (Rodriguez-Esteban et al. 1997; Laufer et al 1997),
but mouse null 

 

R-fng

 

2

 

 mutants show no defects in limb de-
velopment (Moran et al. 1999). Although more experiments
are needed to resolve this unexpected finding, one possible
explanation is that functional redundancy of fringe family
members may be utilized differently in the chick and mouse,
resulting in one family member bearing most or all of a par-
ticular task in one species and another member performing
that task in the other.

Another case of DSD in vertebrate limbs involves hetero-
chrony of events in the development of autopods (hands and
feet). The autopods of urodele salamanders, like all tetra-
pods, show a conserved posterior-to-anterior patterning po-
larity of the 

 

sonic hedgehog

 

, 

 

BMP

 

, and 

 

Hoxd

 

 genes during
development (Torok et al. 1998), but their digits differenti-
ate in the opposite order (anterior to posterior) from other
known tetrapods (reviewed by Gardiner et al. 1998). Al-
though the mechanism and importance of this reversal in the

timing of digit formation is not known, this type of ontoge-
netic shift may also be involved in many cases of convergent
evolution seen in salamander limbs. For example, in pleth-
odontid salamanders, increased foot webbing has evolved
multiple independent times, using at least two different
developmental mechanisms (paedomorphic arrest of digit
growth and late growth of cutaneous webbing; reviewed by
Wake 1991).

Perhaps the most striking examples of diversity in a con-
served regulatory process are found in animal sex determina-
tion. Although primary sex determining signals vary widely
among animals, from environmental to chromosomal or ge-
notypic, the hierarchy of regulatory molecules points to
striking cases of both conservation and functional diver-
gence (reviewed by Marin and Baker 1998; Schutt and
Nothiger 2000). One level at which a great degree of evolu-
tionary divergence has taken place occurs very early in the
sex determination regulatory cascade. In 

 

Drosophila

 

, the
splicing factor 

 

Sex-lethal

 

 (

 

Sxl

 

) is activated in chromosomal
(XX) females and specifies female development by directing
the female-specific splicing of 

 

Sxl

 

 itself as well as its down-
stream target 

 

transformer.

 

 In chromosomal (XY) males, 

 

Sxl

 

remains inactive and the default pathway of male develop-
ment takes place (reviewed by MacDougall et al. 1995). In
the housefly 

 

Musca domestica

 

, genetic studies have indi-
cated that an analogous sex determination switch gene,
called 

 

F

 

, exists, which is active in females and inactive in
males (McDonald et al. 1978; Schmidt et al. 1997). 

 

F

 

 and

 

Sxl

 

, thus, seem to have parallel functions. In order to deter-
mine if 

 

F

 

 and 

 

Sxl

 

 are homologous genes, Meise et al. (1998)
isolated the homolog of 

 

Sxl

 

 from 

 

M. domestica.

 

 They found
that the protein sequence was highly conserved (83% identi-
cal between 

 

Drosophila

 

 and 

 

Musca

 

), but does not show sex-
specific regulation and is expressed apparently identically in
both sexes throughout development. Further, when ectopi-
cally expressed in 

 

D. melanogaster

 

, 

 

M. domestica Sxl

 

 had no
effect on expression of genes known to be regulated by 

 

D.
melanogaster Sxl.

 

 In a similar experiment, the 

 

Sxl

 

 homolog
from the Mediterranean fruitfly 

 

Cerititis capitata

 

 also had no
effect on 

 

Sxl

 

 target genes when expressed in 

 

D. melano-
gaster

 

 (Saccone et al. 1998). Thus, it appears that sex deter-
mination pathways have evolved substantially since these
dipteran flies diverged over the last 150 Myr. The failure of

 

Sxl

 

 homologues to produce sexual transformation in 

 

Droso-
phila

 

 suggests that they cannot recognize or act upon the ap-
propriate RNA targets because of sequence evolution. Rapid
sequence change is a hallmark of the molecular evolution of
genes associated with sex determination and sexual differen-
tiation in many animal species (e.g., Civetta and Singh 1998;
Wyckoff et al. 2000), and therefore this is not surprising. But
the lack of sex-specific regulation of 

 

Sxl

 

 in 

 

Musca

 

 suggests
that it has no sex determination function at all in 

 

Musca.

 

However, the high level of conservation of 

 

Sxl

 

, especially in
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the two RNA binding domains, strongly suggests that it must
still function in mRNA splicing in 

 

Musca

 

 and 

 

Ceratitis.

 

Thus, in addition to the accumulation of sequence change,
DSD can also alter the connectivity of genes in a develop-
mental pathway. Indeed, even though upstream sex determi-
nation genes like 

 

Sxl

 

 show a high degree of evolutionary di-
vergence, the transcription factor 

 

doublesex

 

/

 

MAB-3

 

/

 

DM

 

appears to have retained a highly conserved role as a readout
of the sex determination hierarchy in invertebrates and ver-
tebrates (Zhu et al. 2000; see reviews by Marin and Baker
1998 and Schutt and Nothiger 2000).

 

GENES, POPULATIONS, AND DSD

 

How do differences in the development of conserved pheno-
types among different species evolve? One genetically well-
studied set of diverging developmental processes underlies
the speciation process itself. In sexually reproducing organ-
isms, biological species are often defined by inviability and
infertility occurring in hybrids. In fact, these syndromes are
manifestations of DSD in embryogenesis and gametogen-
esis. Recent research on the genetics of how biological
species originate has shown that two factors dictate the
dynamics of DSD as it relates to speciation. The first is a
characteristic of the developmental pathways underlying
zygote viability and gamete production. These are both ab-
solutely essential and extremely polygenic processes, so it is
not surprising that interspecies hybrids often fail due to in-
compatibilities among the many genes controlling them (re-
viewed by Wu and Palopoli 1994; Coyne and Orr 1998).
Some systems, such as fertility in the heterogametic sex of
animals (Haldane’s rule), appear particularly susceptible to
DSD. Various workers have suggested that this is because
their components are subject to strong sexual selection (Wu
et al. 1996), sexually antagonistic pleiotropy (Rice 1992,
1996; Price 1997), or selection involving meiotic drive sys-
tems (Frank 1991; Hurst and Pomiankowski 1991). Other
traits, involving embryogenic, morphogenetic, and meta-
bolic pathways, appear to evolve DSD more slowly. Perhaps
this is because they are subject to weaker and/or stabilizing
selection or because they are canalized against genetic and
environmental fluctuation (Gibson and Wagner 2000), and
thus better able to withstand the molecular deviations brought
together in species hybrids. However, although differing se-
lection between species may often drive the appearance and
degree of DSD, this need not always be the case. The direct
causes of DSD may also include processes distinct from se-
lection but causing correlated effects, such as linkage and
pleiotropy, as well as genetic drift.

The second characteristic influencing the appearance of
DSD involves the structure of populations. Panmictic popu-
lations tend to remain as intact species, without divergence

in developmental systems, but isolated populations and na-
scent species inevitably develop incompatibilities, even if
exposed to the same selection regimes. Biological speciation
always involves the isolation of gene pools (Mayr 1963; Hi-
gashi et al. 1999; Dieckmann and Doebeli 1999). The classic
genetic model of speciation (Dobzhansky 1936; Muller
1940), most recently updated by Orr (1995), describes how
these isolated gene pools, gradually fixing novel alleles at
many loci, come to possess incompatibilities. Each popula-
tion’s set of new alleles has not been tested against those of
other populations, and the number of these differential fixa-
tions is expected to be approximately proportional to the
time of isolation. There is no reason to believe that DSD
stops once reproductive incompatibility is complete, how-
ever, and thus long-separated species will exhibit DSD in
many traits as they evolve new ways to construct these traits.

How the genetic factors underlying DSD arise and are
maintained in populations is not well studied, but there is
abundant evidence of intraspecific variation in these genes.
Some of the best evidence comes from populations of

 

Drosophila simulans

 

 and 

 

melanogaster

 

 polymorphic for al-
leles that “rescue” the hybrid inviability and sterility usually
seen in 

 

simulans

 

 

 

3

 

 

 

melanogaster

 

 crosses (Sawamura et al.
1993a,b; Davis et al. 1996; Barbash et al. 2000). Similarly,
different populations of the oyster mushroom 

 

Pleurotus
djamor

 

 have been shown to harbor distinct alleles at differ-
ent loci, contributing to the failure to form dikaryons with a
sister species, 

 

P. calyptratus

 

 (Liou 2000). Within-species
variation for factors underlying DSD in morphology can also
be found. Takano-Shimizu (2000) reported a high degree of
variation for susceptibility to hybrid bristle loss among 

 

D.
simulans

 

 strains. Also, Wade and colleagues have demon-
strated that different strains of the flour beetle 

 

Tribolium cas-
taneum

 

 have different propensities to produce abnormalities
in antennal morphology in F1 hybrids with closely related
species (Wade and Johnson 1994; Wade et al. 1994; Wade et
al. 1997). In all of these cases, crosses within populations
produce no abnormal progeny, but more distant outcrosses
uncover polymorphic genetic factors that may eventually be-
come fixed barriers to hybrid development.

 

MOLECULAR MECHANISMS OF DSD

 

What molecules are involved in the evolution of DSD? De-
velopmental pathways consist largely of interactions of gene
products with each other and with regulatory elements of
genes themselves. These interactions depend on specific se-
quences and structural motifs in proteins, DNA, and RNA.
Although many proteins and nucleic acid binding sites have
been highly conserved during evolution, until recently it has
been unclear how the functions and interactions of these fac-
tors undergo conservation and evolutionary change.
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As described above for sex determination evolution, func-
tional roles of proteins in conserved developmental path-
ways can diverge among different lineages. Homeobox tran-
scription factors provide another example of how the protein
functions that underlie conserved embryonic developmental
pathways can fundamentally change. The proteins 

 

fushi
tarazu

 

 (

 

ftz

 

) and 

 

bicoid

 

 (

 

bcd

 

) both have undergone functional
divergence in insects over the past 100 million years (re-
viewed by Gibson 2000). The 

 

ftz

 

 gene, which is physically
located within the Hox tandem array of anteroposterior (AP)
selector genes, appears to have undergone a fundamental
change in its expression pattern since the common ancestor
of insects and chelicerates. In the relatively primitive mites,
centipedes, and onychophorans, 

 

ftz

 

 is expressed in an AP
modulated pattern, similar to its Hox complex neighbors
(Telford 2000), and is thus presumed to have a homeotic
function. However, in relatively derived insects such as flies
and beetles, embryonic 

 

ftz

 

 expression has evolved into a
pair-rule (every other segment) pattern. Consistent with this
pattern, insect 

 

ftz

 

 mutants do not have homeotic phenotypes,
but instead indicate a requirement during patterning of each
segment (Wakimoto et al. 1984). On an even shorter evolu-
tionary time scale, during the evolution of dipteran insects,

 

bcd

 

 appears to have arisen and adopted a new function. In

 

Drosophila

 

, maternal 

 

bcd

 

 is expressed in an AP gradient in
the oocyte and is required in the zygote to activate the gap
gene 

 

hunchback

 

 (

 

Hb

 

). However, orthologs of 

 

bcd

 

 have not
been found in non-dipterans, suggesting that some other pro-
tein serves to regulate zygotic 

 

Hb

 

 expression in other insects.
Recently, Wimmer et al. (2000) performed genetic manipu-
lations in 

 

Drosophila

 

 to show that the requirement for 

 

bcd

 

could be obviated by maternally expressing 

 

Hb

 

, which is
able to activate zygotic 

 

Hb

 

 via an autoregulatory circuit at
the 

 

Hb

 

 locus. In the absence of 

 

bcd

 

, this expression is able to
rescue aspects of segmentation that are defective in 

 

bcd

 

 mu-
tants. Thus, Wimmer et al. (2000) have proposed that the
ancestral mode of embryonic 

 

Hb

 

 regulation may have been
autoregulatory.

Many instances of evolutionary change involve alterations
in patterns of gene expression, rather than gene product func-
tion. Transcription patterns are mediated by regulatory re-
gions of genes, which are often organized into discrete mod-
ules called enhancers. Ludwig and colleagues have elucidated
how enhancers change during interspecific divergence while
mediating the same developmental function. This work con-
centrated on the “stripe 2” enhancer of the 

 

Drosophila even-
skipped

 

 (eve) gene, which encodes a transcription factor re-
quired for embryonic segmentation. The eve stripe 2 element
in D. melanogaster is a 480 bp DNA sequence that regulates
expression of the gene in one of seven stripes in the Droso-
phila blastoderm prior to cellularization. In D. melanogaster,
12 transcription factor binding sites have been identified by
mutagenesis studies, six for the activators Bicoid and Hunch-

back, and six for the repressors Giant and Kruppel. Ludwig et
al. (1998) sequenced the eve stripe 2 region from five other
Drosophila species that have diverged in the last 60 Myr and
were surprised to find many changes in the sequences and
spacing of these binding sites, as well as in the total length of
the enhancer. Even more surprising was the absence of one
Bicoid site from two species and one Hunchback site from
three species. Strikingly though, when eve stripe 2 enhancers
from other species were tested in reporter assays in transgenic
D. melanogaster, all of the elements were expressed in the
normal eve stripe 2 spatial and temporal pattern. Thus, al-
though this enhancer has undergone a rate of sequence substi-
tution equivalent to other non-coding regions, its function has
nevertheless been strictly maintained. Ludwig et al. (1998)
concluded that because the heterologous enhancers func-
tioned in D. melanogaster, stabilizing selection on the en-
hancer itself must be responsible for the functional conserva-
tion because the alternative, species-specific compensatory
changes between regulatory elements and transcription fac-
tors, would have prevented the heterologous enhancers from
functioning in D. melanogaster. In a further experiment, Lud-
wig et al. (2000) found that chimeric enhancers constructed
between D. melanogaster and D. pseudoobscura were not
able to drive reporter expression in the proper eve-stripe 2
pattern, further supporting the stabilizing selection hypoth-
esis.

Another recent study in Drosophila has also provided a
view of the involvement of enhancer sequences in the evolu-
tion of DSD. Skaer and Simpson (2000) undertook an exten-
sive developmental genetic analysis of notum bristle loss in
D. melanogaster/simulans hybrids. They found that hybrid
bristle loss showed temperature sensitivity that differed be-
tween the sexes. A heat-sensitive early stage, affecting both
sexes, corresponds to the time of expression of the X-linked
proneural genes of the Achaete-scute complex (ASC) in bris-
tle prepatterns. A later cold-sensitive stage, affecting fe-
males only, corresponds to the time when bristle precursor
cells are born and require high-level expression of Achaete
and scute. Skaer and Simpson implicated cis-regulatory ASC
sequences in hybrid bristle loss because when hybrids were
made using D. melanogaster chromosomes containing dele-
tions of ASC enhancers needed for establishment of particu-
lar bristles, these bristles were affected significantly more
than hybrids with wild-type chromosomes. They further pro-
posed that sex differences in heat sensitivity might arise be-
cause male hybrids possess only the D. simulans X chromo-
some and hence only one ASC, whereas females possess an
ASC from both species. The early activation of the ASC is de-
pendent on binding of autosomal transregulators whose
function may be temperature sensitive. If this is the case,
then both sexes should be affected because both have auto-
somal factors from both species that must bind the ASC of
the other species. On the other hand, the subsequent mainte-
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nance of ASC expression depends on autoregulation by high
levels of Achaete and scute. This process may also be tem-
perature sensitive, which would affect females more than
males. This is because in female hybrids, Achaete and scute
from both species would need to bind the ASC from the other
species, whereas in males the ASC and its gene products are
from the same species, and thus their interaction may be less
sensitive to temperature. This study thus provides a detailed
model of how interspecific divergence at cis-regulatory sites
of the proneural ASC genes has resulted in an inability of
transcription factors from one species to properly regulate
transcription at the cis-regulatory sites of the other species.

It is still unclear what mechanisms drive these alterations
in protein and enhancer function. Conventional mutational
processes, such as nucleotide substitutions and small inser-
tion/deletion events, probably underlie many functionally im-
portant changes of amino acid sequences, as well as transcrip-
tion factor binding sites like those in eve stripe 2 and the ASC.
On a more saltational level, the process of gene duplication
followed by functional divergence has occurred in the evolu-
tion of many developmentally crucial multigene families, most
notably the animal Hox complex genes (reviewed by Holland
and Garcia-Hernandez 1996; Akam 1998). The most common
result of a gene duplication event is thought to be rapid de-
generation of one copy by lesions that lead to transcriptional
or translational silencing (Nei and Roychoudhury 1973). How-
ever, at some frequency, which has not yet been measured,
duplicated genes evolve changes in coding sequence such
that one copy retains the original function and the other is
able to adopt a new function. Enhancer regions may also un-
dergo changes following duplication events, resulting in novel
expression patterns of one or both gene duplicates. One re-
cent model of this process by Lynch and Force (2000) pre-
dicts that gene duplications can often be preserved by “sub-
functionalization,” whereby different enhancers are inactivated
in members of a duplicate gene pair, such that the “sum” of
their expression patterns still covers the original pattern of the
ancestral gene. This process may act to extend the time during
which both gene duplicates remain functional, allowing more
time for the evolution of novel functions.

FLEXIBILITY AND CONVERGENCE

If developmental pathways underlying conserved pheno-
types can display divergence, then can we expect a similar
amount of diversity in the mechanisms by which distinct
species and populations evolve the same traits during con-
vergence (Fig. 1B), or are constraints important in delimiting
these possibilities? Just as DSD becomes more likely with
increasing numbers of divergent genes, one might expect
that the more complex the organism—in terms of the number
of genes, biochemical pathways, or cell types involved in de-

velopment—the more distinct ways that organism might be
able to evolve. Many cases of convergence are well known
in both simple and complex organisms. Current data sug-
gests a mixture of flexibility and constraint operating in mi-
crobial systems, but many fascinating cases of convergence
in higher organisms still await characterization.

Studies of antibiotic resistance mechanisms in bacteria
indicate that there is often more than one type of genetic al-
teration that bacteria have deployed against each of seven
classes of chemical antibiotics, but these appear to be quite
finite and have occurred repeatedly in different species
(Baquero and Blazquez 1997; Walsh 2000). Moreover, hor-
izontal gene transfer, by means of plasmids and tranposons,
has been found to be a key mechanism in the spread of most
clinically important forms of antibiotic resistance (Maiden
1998). This indicates that resistance genes typically evolve
only infrequently and are “found” and utilized by multiple
populations and species, thus eliminating the need for mi-
crobes to reinvent genes. In addition to these typically oligo-
genic responses to strong environmental selection, experi-
mental evolutionary studies in phage and bacteria have also
provided an excellent means to observe evolutionary trajec-
tories. In one such experiment (Wichman et al. 1999), inde-
pendent replicate lines of bacteriophage fX174, whose nor-
mal host is E. coli, were exposed to higher temperatures
while infecting a novel host, Salmonella typhimurium, and
allowed to adapt for 1000 generations. After this regime,
phage growth rates had improved between 4000 to 18000 fold.
In two lines analyzed by genomic sequencing, one had expe-
rienced 14 nucleotide substitutions and the other had experi-
enced 13. Constraint in evolutionary trajectories was appar-
ent in that six of these substitutions and one 27 base pair
deletion occurred in both lines. Further experiments by
Wichman et al. (1999) found that such parallel evolution
seems to be quite common in these phage; only five substi-
tutions were unique to particular lines and, furthermore, four
of the substitutions that occurred in selected fX174 lines
were also seen as fixed changes in the closely related phage
S13, whose natural host is Salmonella. Extensive studies of
experimental evolution in E. coli by Lenski and colleagues
have also demonstrated a mixture of flexibility and conver-
gence or parallelism, depending on the trait studied. Dis-
tinct evolutionary responses to starvation conditions (Vasi
and Lenski 1997) and fluctuating nutrition (Vasi et al. 1994;
Vasi and Lenski 1997), as well as divergence in cell size
(Travisano et al. 1995), showed evidence for distinct trajec-
tories and dependence on previous evolutionary history in
independent strains. However, traits that are directly related
to fitness, such as overall competitive growth ability, showed
evidence of convergence and tended to be independent of
previous evolutionary history, suggesting limitations in the
number and kinds of trajectories (Vasi et al. 1994; Travisano
et al. 1995).
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Multicellular organisms utilize a greater number of bio-
chemical and developmental pathways and components of
these pathways are often used during multiple stages and in
multiple tissues. This conceivably provides more possible
ways for developmental systems to respond to selection. In-
deed, intuitively obvious examples of unique solutions to a
common problem in deeply divergent lineages have been
recognized for many years, such as the distinct skeletal de-
tails underlying the three independently evolved instances of
flight in vertebrates (i.e., pterosaurs, bats, and birds) or the
different tail axes in fish versus whales. However, the cur-
rent revolution in molecular systematics is revealing many
cases of convergent and parallel evolution over much shorter
time scales that could provide detailed insights into the flex-
ibility of evolutionary trajectories in complex organisms. For
example, discoveries of convergent radiations in Caribbean
Anolis lizards (Losos et al. 1998) and North American stick-
leback fish (Taylor and McPhail 1999) have been celebrated
as instances where the great power of natural selection has
overcome contingent factors to produce quite predictable
outcomes in independent episodes (Harvey and Partridge
1998). While the developmental processes underlying these
striking convergent radiations in vertebrates have yet to be
investigated, recent studies of convergence and parallelism
in insects provide significant evidence of flexibility in evo-
lutionary trajectories.

One of the most famous convergent phenomena, butterfly
mimicry, gives tantalizing indications of diversity during
evolution of similar phenotypes in distinct species. For ex-
ample, in the closely related species pair Heliconius mel-
pomene/erato, populations from different geographic re-
gions are involved in several Mullerian mimicry complexes,
each with a specific pattern. Within each complex, the pat-
terns appear similar enough to fool a predator, but upon close
scrutiny many subtle differences become apparent. This is

shown in Figure 3, which illustrates co-mimics from western
Brazil. On their forewings, both the melpomene (Fig. 3A)
and erato (Fig. 3B) co-mimics show a conspicuous pale yel-
low patch (black arrows) with a proximal black indentation,
and on their hindwings both species have a red-orange prox-
imal stripe (blue arrowheads). However, the black forewing
indentation appears quite different between the two species.
In melpomene, the indentation appears in a more anterior
wing cell (intervein area) than in erato. Also, in the hind-
wing, the proximal stripe is much wider in melpomene than
erato. These types of differences occur between all melpo-
mene and erato co-mimic pairs (see Nijhout 1991, Plate 5),
suggesting that although these closely related species proba-
bly utilize the same ancestral patterning mechanisms, at least
slightly different developmental alterations have been fixed
in independent lineages evolving toward the same pattern.
The phylogenetic relationships of morphs within these spe-
cies are still controversial, but could ultimately shed light on
the likelihood of different modes of pattern change. In par-
ticular, extensive co-evolution between melpomene and er-
ato, which has been traditionally argued (Sheppard et al.
1985), might favor identical evolutionary trajectories. This
view is supported by the similar Mendelian genetic architec-
tures for certain pattern motifs in the two species (reviewed
by Nijhout 1991; Mallet et al. 1996). Surprisingly though,
molecular phylogenetic analysis by Brower (1994, 1996) in-
dicates that relationships among color pattern morphs within
the two species are not congruent and suggests very different
time estimates for the radiations of morphs within each spe-
cies (less than one Ma for melpomene and 1.5–2 Ma for er-
ato). Thus, quite different paths of evolutionary change
might be envisioned for the co-mimics of these two species.

Striking instances of diverse but parallel trajectories of
adaptation can even be found between populations of the
same species. A recently discovered example occurs in Dro-

Fig. 3. Fine scale differences in pattern elements in Mullerian mimics suggest diversity in developmental mechanisms. Western Brazil
morphs of Heliconius melpomene (A) and H. erato (B). Subtly different forewing (black arrows) and hindwing (blue arrowheads) pattern
elements are indicated (see text for description). Images courtesy of H. F. Nijhout.
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sophila wing size clines. In native European populations of
D. subobscura, wing size increases with increasing latitude.
In North America, which was colonized only in the last few
decades, D. subobscura populations appear to have rapidly
evolved a similar latitudinal cline. Interestingly, Huey et al.
(2000) found a subtle but distinct difference in the develop-
mental mechanism by which the wing length changes have
been achieved. In European populations, greater wing length
is caused by lengthening a basal part of one wing vein, whereas
in North America, increased size is caused by lengthening a
more distal portion of this wing vein. Molecular genetic and
developmental characterization of these species- and popu-
lation-level differences in patterning and morphogenesis
would greatly aid in determining the relative importance of
constraint and flexibility in phenotypic evolution.

CONCLUSION: GHOSTS IN THE
EVO-DEVO MACHINE

One of the major issues that arose in the wake of the Neo-
Darwinian synthesis was the Classical versus Balance debate
(reviewed by Dobzhansky 1970; Lewontin 1974). Advo-
cates of the Classical view, following T. H. Morgan, empha-
sized the relative paucity of morphological variation within
species, and argued that genes in populations were largely
invariable and that the fittest “wild type” alleles dominated.
Balance advocates, on the other hand, led by S. Chetverikov,
predicted a large amount of hidden variation in populations.
The development of molecular population genetics, starting
in the 1960s, revealed that natural populations abound with
molecular genetic variation, largely proving that the intui-
tions of the Balance advocates were correct (Powell 1997).
This debate has been largely abandoned, but perhaps its most
glaring unsolved problem now haunts evolutionary develop-
mental biologists (e.g., Stern 2000): how much and what
kinds of variability in developmental systems are meaning-
ful and available for natural selection to act upon? Views
based on the widely held neutral theory posit that much of
the molecular variation in natural populations must be neu-
tral or nearly neutral with respect to phenotype (Kimura 1983).
Nevertheless, although difficult to quantify, significant phe-
notypic effects have been routinely demonstrated for non-
protein-coding molecular polymorphisms (e.g., Laurie et al.
1991; Gibson and Hogness 1996; Long et al. 1998). How-
ever, by necessity, these studies rely on examining effects in
isogenic backgrounds, whereas in nature, it is probable that
no two genetic backgrounds in which an allele occurs are
identical. Moreover, recent work in both developmental and
quantitative genetics has found epistatic interactions among
genes to be of paramount importance in determining pheno-
types. Indeed, studies of major-effect Drosophila mutants in
multiple strains have shown that the effects of single genes

depend heavily on the genetic background, which can com-
pletely suppress the mutant phenotype, highly enhance it, or
result in intermediate states between these extremes (e.g.,
Gibson et al. 1999; Polaczyk et al. 1998). Thus, in light of the
importance of genetic context in which mutants arise, cur-
rent views of the importance of molecular variation may
need to be substantially revised.

Developmental evolutionary biology must ultimately ad-
dress and model how natural selection acts upon variation in
components of developmental pathways to cause evolution-
ary change. Evolutionary genetics has been advancing to-
ward this goal for some time, but developmental genetics has
yet to assimilate its lessons in a meaningful way. We have
aimed in this review to illustrate the great complexity and
taxon-specificity of development, and to provide some ex-
amples of how it came to be. This picture of divergence,
based to a large degree on contingency and chance, greatly
complicates our notions of the process of adaptation and in-
creasingly makes developmental evolution a series of case
studies with few overarching laws. The widespread occur-
rence of DSD suggests that within species, developmental
systems may be constantly struggling to suppress or accom-
modate the entropic and context-specific effects of genetic
variation. Through fixation of many epistatic alleles and the
constant shuffling of genetic backgrounds, initially identical
developmental systems become species-specific Rube Gold-
berg contraptions of a sort, with each independent lineage
developing a unique set of expedient measures to deal with
current adaptational needs. These independently evolving
contraptions are thus constantly diverging, and species are
produced with many superficially similar, but ultimately
unique and non-interchangeable, solutions to selection’s
ever-present conundrums.
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