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ABSTRACT We examined the possibility that a nonnative oyster species would provide an ecologically functional equivalent of

the native oyster species if introduced into the Chesapeake Bay. Habitat complexity and associated benthic communities of

experimental triploid Crassostrea virginica and Crassostrea ariakensis reefs were investigated at 4 sites of varying salinity, tidal

regime, water depth, predation intensity, and disease pressure in the Chesapeake Bay region (Maryland and Virginia). Four

experimental treatments were established at each site: C. virginica, C. ariakensis, 50:50 of C. virginica and C. ariakensis, and shell

only. Abundance, biomass, species richness, evenness, dominance, and diversity of reef-associated fauna were evaluated in

relation to habitat location and oyster species. Although habitat complexity varied with location, no differences among

complexity were associated with oyster species. Similarly, differences in faunal assemblages were more pronounced between sites

than within sites. Our results show functional equivalency between oyster species with respect to habitat at the intertidal site and

the low-salinity subtidal location. At subtidal sites of higher salinity, however, the numbers of organisms associated with

C. virginica reefs per unit of oyster biomass were significantly greater than the numbers of organisms associated withC. ariakensis

reefs. Multivariate analyses of data from subtidal high-salinity sites revealed unique communities associated with C. virginica

treatments, whereas mixed-oyster species assemblages were functionally equivalent to monospecific C. ariakensis experimental

treatments. Our study represents the first effort to quantify the potential habitat function of C. ariakensis, which has been

proposed for an intentional introduction into Chesapeake Bay, and provides evidence of species-specific similarities and

differences in reef-associated communities.
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INTRODUCTION

Biogenic reefs constructed by the Eastern oyster, Crassostrea
virginica, provide complex, three-dimensional structural habitats

in soft-sediment marine systems analogous to those provided by
coral reefs (e.g., Genin et al. 1986), seagrass beds (e.g., Heck &
Orth 1980), salt marshes (e.g., Kneib 1984), kelp beds (e.g., Estes

& Duggins 1995), foliose algae (e.g., Kelaher & Rouse 2003),
reef-building polychaetes (e.g., Schwindt & Iribarne 2000), and
mussel beds (e.g., Seed 1996). The physical structure of these

biogenic habitats, including their size, location, and architectural
complexity, may influence ecological function (Bell et al. 1991).
For example, the morphology, structural heterogeneity, and
vertical complexity of oyster reefs often control the recruitment,

persistence, and diversity of their inhabitants (e.g., Lenihan &
Peterson 1998). Furthermore, macroinvertebrate densities and
species richness are generally positively correlated with habitat

structural complexity (Crowder & Cooper 1982, Diehl 1992,
Posey et al. in preparation), which often allows for the

coexistence of competitors while providing refuge for prey

species (Hixon & Menge 1991).
Dramatic declines in the abundance of C. virginica popula-

tions in Chesapeake Bay and other localities along the U.S.

eastern seaboard have been observed during the past 50 y as
a result of the combined stresses of disease (Haplosporidium
nelsoni [MSX] and Perkinsus marinus [Dermo]; Fisher 1996,

Ford & Tripp 1996, Lenihan et al. 1999, Mann 2000), overfish-
ing (Gross & Smyth 1946, Rothschild et al. 1994), deterioration
in water quality (Lenihan & Peterson 1998), and reef degrada-
tion (Hargis & Havin 1988, Coen 1995, Lenihan & Peterson

1998, Mann 2000). In addition to the loss of a once valuable
oyster fishery, these declines have reduced many of the ecolog-
ical functions once provided by this species.

The native Eastern oyster, C. virginica, provides several
critical ecosystem services, including reduction of water turbid-
ity through active filtration (Newell 1988, Nelson et al. 2004)

and decreased water flow (Dame et al. 1984), stabilization of
substrate, erosion amelioration (Meyer et al. 1997), habitat
provision for many other marine organisms (Coen et al. 1999),
and enhanced benthic–pelagic coupling through the transfer of

nutrients from the water column to the benthos (Dame 1999,
Dame et al. 2001, Porter et al. 2004) and the facilitation of the
transfer of energy from the benthos to higher trophic levels

(Peterson et al. 2003). As a result of the three-dimensional
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structure provided by C. virginica that supports a diverse
assemblage of organisms generally not found in surrounding

soft-bottom habitats (Dame 1979, Zimmerman et al. 1989,
Coen et al. 1999, Posey et al. 1999), oyster reefs are now broadly
recognized as ecosystem engineers (Luckenbach et al. 1999,
Gutiérrez et al. 2003, ASMFC 2007).

Substantial efforts to restore both the fishery resource and
habitat value of oyster reefs in many Atlantic coast estuaries
(Ortega & Sutherland 1992, Luckenbach et al. 1996, Coen et al.

1997, Mann & Powell 2007) have often been limited in their
success. As a result of the continued decline of C. virginica in
Chesapeake Bay, the introduction of a nonindigenous oyster

species (the Suminoe oyster, Crassostrea ariakensis) that is
resistant to known diseases of the native oyster has been under
consideration by the states of Maryland and Virginia for most
of the past decade (e.g., Rickards & Ticco 2002).

Proposals of deliberate introductions of exotic species raise
many concerns. In this case, for example, issues of controversy
included possible competitive interactions with the native

species for food and space, the possible cointroduction of other
nonnative species, including pathogens, and the general lack of
information on the biology and ecology of the Suminoe oyster,

C. ariakensis, in its native environment. Although an introduc-
tion has been tabled at present, the proposal was far from novel,
and we expect similar proposals to arise in the future. The

premeditated movement of aquatic species for aquaculture and
fishery enhancement purposes has occurred for more than
2000 y (Mann et al. 1991), with oysters being perhaps the most
pervasive example (Ruesink et al. 2005). Thus, despite the

current abandonment of the proposal in Chesapeake Bay,
results of research investigating this proposed introduction
may be far-reaching.

Given the accepted habitat value of C. virginica reefs, the
functional equivalency ofC. ariakensis reefs should be of concern,
particularly given that the growth forms and reef-forming

capabilities of C. ariakensis remain in question (Zhou & Allen
2003). Functional equivalency, often used as a predictor of
restoration success in marine systems (Lockwood & Pimm
2001, Peterson & Lipcius 2003, Peyre et al. 2007), may be

especially important if the introduced species were to outcompete
the native species in some areas, leaving only the nonnative
species with ecologically relevant population sizes. As a result of

morphological and genetic uncertainties surrounding species
identifications in the genus Crassostrea, there is a general lack
of information on the basic biology and ecology of C. ariakensis

within its native habitat, making the prediction of the ecological
impacts of an introduction of C. ariakensis within Chesapeake
Bay more difficult. Short-term laboratory trials have also raised

doubts over the ability of C. ariakensis to form the dense
aggregations observed in C. virginica (Luckenbach, unpublished
data); however, long-term trials have yet to be conducted because
of quarantine system constraints.

Previous studies ofC. virginicahave shown that certain aspects
of reef morphology (e.g., shape, size, and vertical complexity)
may influence the degree to which reefs are used as habitat by

other species (Posey et al. in preparation). If C. virginica and
C. ariakensis differ in their reef-forming capabilities, this could
have dramatic effects on the reef-associated fauna of Chesapeake

Bay if C. ariakensis were to be introduced.
Although there have been several previous field studies

investigating the survival and growth of C. ariakensis in

Virginia and North Carolina waters, (e.g., Calvo et al. 2001,
Grabowski et al. 2005), these trials provide little information on

the growth form and reef-building potential of C. ariakensis, or
the potential competitive interactions between the 2 Crassostrea
species. Although several recent studies using diploid
C. ariakensis and C. virginica in quarantined systems (Kingsley-

Smith & Luckenbach 2008, Newell et al. unpublished data, Allen
et al. unpublished data.) have addressed some of these issues, they
do not duplicate conditions in natural-bottom habitats and

therefore have limitations in their applications.
In a recently completed large-scale field study, Kingsley-

Smith et al. (2009) examined the comparative survival, growth,

and disease dynamics ofC. virginica andC. ariakensis in bottom
environments in the Chesapeake Bay region. This project
provided the first opportunity for an on-bottom comparison
of reef formation, habitat provision, and habitat function in

C. virginica andC. ariakensis.Given the ecological importance of
habitat provision by the native oyster, C. virginica (Luckenbach
et al. 2005b, Rodney& Paynter 2006), there is an obvious need to

evaluate the functional equivalency of a nonnative species prior
to an intentional introduction. The objective of the current study
was to provide a quantitative comparison of the habitat structure

of C. virginica and C. ariakensis experimental reefs, and of their
utilization as habitat by other marine organisms throughout the
course of reef development. Our results suggest habitat function

may vary between species at some locations within the Ches-
apeake Bay region. These findings should be included among
future considerations of the advantages and concerns surround-
ing the potential environmental impacts of nonnative species

introductions.

MATERIALS AND METHODS

Experimental Design

Details of the experimental design are given in Kingsley-
Smith et al. (2009), which compared the survival, growth, and
disease dynamics of triploidC. virginica and triploidC. ariakensis
in bottom environments across a range of environmental condi-

tions in the ChesapeakeBay region. Briefly, 4 field sites within the
Chesapeake Bay region were selected to encompass a range of
tidal environments, predicted salinities, disease pressures, and

relative predator abundances (Table 1, Fig. 1).
In late October to early November 2005, 4 experimental

treatments were established at each of the 4 sites. Each site

included 2 blocks with 1 treatment replicated per block. Exper-
imental triploid oyster treatments were as follows: C. virginica
only, C. ariakensis only, and a 50:50 mixture of the 2 oyster

species. A tray control with no live oysters was also included,
comprised of clean C. virginica shell. In-depth descriptions of
triploid oyster production, setting, and biosecurity precautions
can be found in Kingsley-Smith et al. (2009).

Treatment replicates (henceforth referred to as reefs) were
established as 5 3 5 arrays of plastic oyster grow-out trays. Each
tray (58.4 cm in width 3 58.4 cm in length 3 7.3 cm in height)

was evenly ventilated with 0.6-cm-diameter holes. Prior to the
start of experiments, all trays were lined with 2-mm Fiberglas
window screen and filled with a base layer of clean C. virginica

shell. For live oyster treatments, juvenile oysters were added to
achieve a target density of ;400 oysters/m2 (136 animals/tray).
The tray control received oyster shell but no live oysters. Realized
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initial densities differed slightly across sites and between treat-

ments (Virginia sites: C. virginica ¼ 358.1 oysters/m2, C.
ariakensis ¼ 325.9 oysters/m2, mixed-species treatments ¼
342.0 oysters/m2; Maryland sites: all treatments ¼ 353.1 oys-

ters/m2). Mean shell heights of C. virginica and C. ariakensis at
deployment were 12.80mm (n¼ 1,362, SD¼ 5.68) and 13.85mm
(n ¼ 1,272, SD ¼ 5.45), respectively.

Because 2 of our treatments contained nonnative oysters, it

was necessary to enclose all our experimental reefs in cages as
a biosecurity measure to protect against disturbances, redistri-
butions, and losses of oysters from the experimental plots by

extreme weather events and anthropogenic activities. Each
array of 25 trayswas surrounded by a largemetal cage constructed
from 3.8-cm-diameter galvanized steel pipe and chain-link fence

with 5-cm openings. Cages were placed on the seabed at least 1 m
apart. The 5-cm mesh prevented disturbances by large epibenthic
predators, such as cownose rays, while permitting access to the

oysters by small benthic predators such as gobies, blennies, and
xanthid crabs.

Sampling occurred 1 mo postdeployment and again in
spring, summer, and fall of the following 2 y (2006 and 2007).

Using the risk–averse sampling design described by Kingsley-
Smith et al. (2009), 3 trays were removed from each cage at each
site during each sampling event andwere replacedwith trays filled

with clean shell to maintain the spatial integrity of each experi-
mental reef. All 24 trays (3 trays per cage 3 4 treatments 3 2
blocks) from a site were sampled on a single day and transported

to the laboratory for processing. As a result of unforeseen
complications, discussed at length in Kingsley-Smith et al.
(2009), July 2006 was the last sampling period for which all
treatment replicates were intact across all sites, and results from

that sampling event are reported here. Temporal comparisons of
habitat complexity and faunal communities will be reported
elsewhere (Harwell et al. in preparation).

Habitat Complexity

Upon returning to the laboratory, each tray was photo-

graphed from the side, maintaining a predetermined, consistent
distance between the camera and each tray. The software
program Image-J (National Institutes of Health, Bethesda,
MD, version 1.41) was used to quantify habitat complexity by

obtaining measurements of maximum vertical reef height,
average reef height, and surface rugosity from each digital
image. Maximum vertical height was defined as the greatest

distance between the top of the tray and the growing margin of
an oyster protruding upward from the tray. In addition to the
maximum vertical height, measurements were taken for the next

9 oyster-growing margins judged to be at the greatest perpen-

dicular distance from the upper level of the tray. Average reef
height was calculated as the means of these sets of 10 measure-
ments. A unitless surface rugosity measurement was obtained

from digital images of each tray by calculating the ratio of
a contoured outline of the oysters within a tray to the linear
length of the tray. This was amodified adaptation of the ‘‘chain-
link’’ method, widely used to assess surface topography of coral

reefs (Rogers et al. 1983, Aronson & Precht 1995), in which
rugosity (R) was calculated as R ¼ 1 – d/l, where d is the
horizontal distance covered by the chain when conformed to the

substratum and l is the length of the chain when fully extended
(Aronson & Precht 1995).

Associated Fauna

After the removal of experimental oyster clumps and all
C. virginica shell material, the remaining contents of each tray
were rinsed on a 1-mm mesh sieve, then fixed in 10% buffered

formalin for a minimum of 48 h prior to sorting, identification,
and enumeration of organisms at the lowest practical taxonomic

TABLE 1.

Field site characteristics, predicted disease pressures, and relative predator abundances.

Site Tidal Regime Depth (m)

Salinity (psu)

(average; range)

Predicted Disease

Pressure*

Predicted Relative

Predator Abundance†

Severn Subtidal 3–4 Low (9.6; 3–14) No Dermo, no MSX Low

Patuxent Subtidal 3–4 Mid (11.6,8–16) Low Dermo, no MSX Moderate

York Subtidal 1–2 High (16.5; 8–22) High Dermo, high MSX High

Machipongo Intertidal 0–2 High (25.8; 3–34) High Dermo, high MSX Highest

* Supporting citation for a priori prediction of disease patters across sites: Calvo et al. (1999).

† Supporting citation for a priori prediction of predation patterns across sites: White and Wilson (1996).

Figure 1. Study site locations throughout the Chesapeake Bay region.
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level. Organisms were then preserved in 70% ethanol prior to
drying, weighing, and combustion to determine ash-free dry

weights. In addition to abundance and biomass data, species
richness, Pielou’s evenness, and Shannon-Weiner diversity were
calculated for each sample using the PRIMER software package.

Statistical Analyses

Prior to analyses, all data from July 2006 were log-trans-
formed tomeet the assumptions of normality (Shapiro-Wilk) and

homogeneity of variance (F-max test). Three-way, fixed-factor
analysis of variance (ANOVA) models, with site, treatment, and
block (nested with site) as factors, were used to analyze data for

each index of habitat complexity (maximum reef height, average
reef height, and surface rugosity) and each of the community
metrics (total number of individuals per sample, species richness,
Pielou’s evenness, and Shannon-Weiner diversity). As a result of

the high prevalence of significant site–treatment interactions,
a series of 2-way, fixed-factorANOVAs for eachmain effect (site,
treatment) were run within appropriate subsets of the data. In

2-way ANOVA models, block effects were generally not signif-
icant (block effects were rare), so we removed block from the
model and ran 1-way ANOVA models. Pairwise comparisons

were made using Tukey’s tests when ANOVA indicated a signif-
icant site or treatment effect.

A similar series of tests (3-way, fixed-factor ANOVAmodels

followed by reduced 2-way and 1-way models) were run on the
total abundance and biomass of all reef-associated fauna, as
well as for individual dominant species. Species comprising at
least 1% of the total abundance or biomass of associated fauna

at a site were considered dominant. All abundance and biomass
data for live oyster treatments were standardized by oyster
biomass prior to further analyses and met assumptions of

normality (Shapiro-Wilk) and homogeneity of variance
(F-max test). When block was not significant, the fixed-factor
ANOVA model was reduced and Tukey’s test was used to

conduct pairwise comparisons among sites and treatments if
ANOVA indicated a significant effect of a main factor.

To evaluate further the variations in community structure
between treatments, multivariate approaches in the PRIMER
statistical software package (Plymouth Marine Laboratory,
Plymouth, UK, version 5) were also used. Similarity matrices

were calculated using nontransformed abundance and biomass
data standardized by oyster biomass. These similarity matrices
were used to create nonmetric multidimensional scaling plots of

each sample at a given site. Analysis of similarity, which takes
both species composition and abundance into account, was
then performed on the similarity matrices to determine whether

treatment differences were present.

RESULTS

Habitat Complexity

Maximum reef heights for C. ariakensis treatments were
lowest at the intertidal, high-salinity site (Machipongo River,

VA), averaging 2.42 cm above the top of the trays (F ¼ 16.79,
P < 0.0001; Fig. 2). Nonnative oysters grown at the subtidal sites
exhibited a positive relationship between maximum reef height

and salinity, with averages of 3.75 cm, 5.15 cm, and 5.97 cm at
the low- (Severn River, MD), mid- (Patuxent River, MD), and
high-salinity (York River, VA) subtidal sites, respectively.

Statistically, values at the Severn were lower than those at the
York, whereas the intermediate heights observed at the Patux-
ent were similar to the other 2 subtidal sites. C. virginica
maximum heights were also lowest at the intertidal site (mean,

2.19 cm). At subtidal locations, the native species (C. virginica)
displayed similar maximum reef heights, regardless of salinity
(F ¼ 11.64, P ¼ 0.0001), with average values of 3.78 cm

(Severn), 4.74 cm (Patuxent), and 3.47 cm (York). Site effects
on maximum reef height for mixed-oyster species treatments
were similar to those of C. ariakensis, with lowest values at the

Figure 2. Mean maximum (black bars) and average (white bars) ‘‘reef’’ heights of experimental treatments at each site in July 2006. (A) Severn. (B)

Patuxent. (C) York. (D) Machipongo. Data are expressed as mean reef height (in centimeters) as measured from the top of each tray. Error bars

represent the SEM, and different letters over bars indicate significantly different values (P < 0.05, Tukey’s test).
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intertidal site (1.83 cm) and increasing heights with increasing
salinity at subtidal locations (F ¼ 25.51, P < 0.0001). Similar

heights were observed at all 4 sites for shell-only treatments.
Site effects were also observed for average reef height, where,

once again, intertidal reefs were shorter than all subtidal reefs,
irrespective of oyster treatment (F ¼ 47.87, P < 0.0001). C. aria-

kensis andmixed-species treatments displayed a pattern similar to
that observed formaximumheight, in that greater average heights
were observed at the high-salinity subtidal site than at the low-

salinity site (F¼ 40.07, P < 0.0001 and F¼ 31.68, P < 0.0001).C.
virginica reefs, however, achieved higher average heights at the
mid-salinity subtidal site (Patuxent) than at the high-salinity

subtidal site (York), with intermediate, overlapping heights found
at the low-salinity site (Severn; F ¼ 19.61, P < 0.0001). Average
heights of shell-only treatments were similar across all sites.

Site effects were not found formean surface rugosity of shell-

only treatments, nor for native oyster treatments (Fig. 3). In the
cases of C. ariakensis and mixed reefs, however, at both the
York and Severn River sites, higher rugosity values were found

than at theMachipongo River site (F¼ 8.30, P < 0.001 and F¼
16.4, P < 0.0001, respectively), with intermediate, overlapping
(i.e., nonsignificant) values at the Patuxent River site.

Habitat complexity indices differed between live oyster
treatments and controls, but did not differ among the 3 live
oyster treatments. With the exception of maximum reef height

at the Machipongo River, values from live oyster treatments
were significantly higher than those without live oysters (Table
2) for all 3 habitat complexity indices (maximum reef height,
average reef height, and surface rugosity) at all 4 sites.

Significant differences between live oyster treatments were not
observed for any of the habitat complexity indices used in this
study, regardless of location in the Chesapeake Bay region.

Associated Fauna: Community Metrics

Of the community metrics tested in this study, significant
treatment effects were rare, but site effects were common. The

total number of organisms collected and identified from the July
2006 samples was 94,434 individuals, with a total biomass of

reef-associated fauna in all samples reaching 983.9 g ash-free
dry weight (Table 3). The greatest abundances of organisms
were found at the 2 higher salinity subtidal sites, the York (n ¼
40,695) and Patuxent (n¼ 32,419) rivers. Intermediate numbers

were found at the Severn River (n¼ 17,009), with lowest overall
abundances occurring at the Machipongo (n ¼ 4,311; F ¼ 180,
P < 0.0001). This trend of increased total abundances with

increased salinity in subtidal sites was seen across all experi-
mental treatments.Without taking oyster biomass into account,
the total number of reef-associated organisms was significantly

higher in the live oyster treatments than in the shell-only
treatment (F ¼ 6.00, P ¼ 0.0011), but similar across oyster
treatments, regardless of oyster species.

For C. ariakensis reefs, species richness was highest (33.5

species) at the York River (F ¼ 24.78, P < 0.0001), with similar
values found at the remaining sites (Severn, 11.2 species;
Patuxent, 15.0 species; Machipongo, 16.7 species). Species

richness for C. virginica reefs was also highest at the York
(37.8), with intermediate values in the Patuxent (16.5) and
Machipongo (15.5), and lowest values at the Severn (10.7) site

(F ¼ 114.21, P < 0.0001). Mixed-oyster species reefs exhibited
a trend similar to that of the C. ariakensis oyster reefs, with
highest species richness at the York (33.5) and similar values for

the remaining sites (Severn, 11.8; Patuxent, 16.3; Machipongo,
15.5; F ¼ 17.86, P < 0.0001). The numbers of species found in
the shell-only treatment were highest in the York (34.8), lowest
in the Severn (12.8) andMachipongo (12.5), and intermediate in

the Patuxent (18.2; F ¼ 73.02, P < 0.0001).
Pielou’s species evenness for C. ariakensis treatments was

similar across the Machipongo, Severn, and York River sites,

with lowest values at the Patuxent site (F ¼ 9.36, P ¼ 0.0005;
Table 4). Lowest species evenness was also observed at the
Patuxent site for all other treatments (P < 0.0001 in all cases).

Species evenness for C. virginica reefs was higher at the
Machipongo than at the York (F ¼ 14.46, P < 0.0001), with

Figure 3. Mean surface rugosity index values of experimental treatments at each site in July 2006. (A) Severn. (B) Patuxent. (C) York. (D)

Machipongo. Unitless surface rugosity measurements were obtained from digital images by calculating the ratio of a contoured outline of the oysters

within a tray to the linear length of the tray. Error bars represent the SEM, and different letters over bars indicate significantly different values (P < 0.05,

Tukey’s test).
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intermediate, overlapping values at the Severn. Mixed-species
reefs had highest species evenness at the Machipongo River site
(F¼ 18.23,P < 0.0001) and intermediate values at the York and
Severn, whereas the shell-only treatment had the highest species

evenness at both the Machipongo and the Severn sites, with
intermediate values occurring at the York.

For both single oyster species treatments (C. virginica only

andC. ariakensis only), dominance differed significantly among
sites, with the highest values at the York, followed in decreasing
order by the Machipongo, the Patuxent, and finally the Severn

(P < 0.0001 in all cases). In the mixed treatment, where both
oyster species coexisted, a similar trend was observed, with
highest values recorded at the York (F ¼ 28.76, P < 0.0001),

although dominance at the Patuxent overlapped values seen at
both the Machipongo and Severn River sites. In the absence of
live oysters (i.e., shell-only treatment), dominance was signifi-
cantly higher at the York River site (F¼ 45.16,P < 0.0001) than

at all other sites.
Site effects on Shannon-Weiner diversity, which takes

species richness, dominance, and evenness into account, were

similar across all live oyster treatments, with the highest species
diversity found at the sites of higher salinities: the York and
Machipongo (P < 0.0001 in all cases). Similarly, lower values of

diversity were observed at the Severn and the Patuxent across
live oyster treatments. The shell-only treatment had lower
Shannon-Weiner diversity at the Patuxent River site than at
all other sites (F ¼ 12.48, P < 0.0001).

Of the community metrics tested in this study, significant
treatment effects were rare and were only observed at the
low-salinity site (Table 4). At the Severn River site, dominance

was higher in the shell-only treatment than in the reefs
comprised of only the native oyster, C. virginica (F ¼ 4.47,
P¼ 0.0148). Nonnative (C. ariakensis) andmixed-oyster species

reefs exhibited intermediate, overlapping values for dominance.
The only other treatment effect on a community metric was
higher Shannon-Weiner diversity at the Severn River site in the

shell-only treatment compared with C. ariakensis reefs (F ¼
4.10, P ¼ 0.0202).

Associated Fauna: Total Standardized Abundance and Biomass

Oyster survival and growth differed significantly between
sites (see Kingsley-Smith et al. 2009 for details). To compare the
effects of oyster species more accurately, not oyster survival, on

reef-associated communities across sites, the total abundances
and ash-free dry weights of reef-associated organisms per
sample were standardized by the oyster biomass present

(methods described in Kingsley-Smith et al. 2009). ANOVAs
for log-transformed data revealed site and treatment effects that
differed from the ANOVA results for raw abundance data.

Correcting for oyster biomass removed all site effects on the
total abundance and biomass of reef-associated fauna. Oyster
species did not affect the total number of reef-associated
organisms at either the Machipongo River or the Severn River

site (Table 5). At the Patuxent and York River sites, however,
the average standardized number of organisms associated with

TABLE 2.

Mean (and SD) of habitat complexity indices (maximum reef height, average reef height, surface rugosity)
for each treatment by site.

Complexity Index

Treatment

F Value P ValueC. ariakensis C. virginica Mixed Species Shell Only

Maximum reef height, cm

Severn 3.75 (0.42)A 3.78 (0.73)A 3.25 (0.34)A 2.49 (0.62)B 8.04 0.0010

Patuxent 5.15 (0.87)A 4.74 (0.84)A 4.37 (0.47)A 1.94 (0.90)B 17.24 <0.0001

York 5.97 (1.90)A 3.47 (0.61)A 6.15 (2.46)A 1.81 (0.92)B 11.74 0.0001

Machipongo 2.42 (0.52)A 2.19 (0.45)A 1.83 (0.30)A 1.79 (0.61)B 2.29 0.1112

Average reef height, cm

Severn 2.77 (0.28)A 2.72 (0.15)A 2.59 (0.18)A 1.19 (0.29)B 43.87 <0.0001

Patuxent 3.82 (0.46)A 3.42 (0.68)A 3.20 (0.22)A 1.05 (0.82)B 23.65 <0.0001

York 4.03 (1.01)A 2.38 (0.54)A 4.07 (1.33)A 0.59 (0.48)B 30.72 <0.0001

Machipongo 1.36 (0.19)A 1.45 (0.16)A 1.07 (0.25)A 0.59 (0.33)B 14.88 <0.0001

Surface rugosity index

Severn 1.36 (0.14)A 1.29 (0.15)A 1.35 (0.10)A 1.13 (0.15)B 4.98 0.0096

Patuxent 1.30 (0.04)A 1.29 (0.08)A 1.29 (0.07)A 1.11 (0.09)B 8.50 0.0090

York 1.46 (0.10)A 1.36 (0.15)A 1.50 (0.13)A 1.13 (0.06)B 13.09 <0.0001

Machipongo 1.20 (0.03)A 1.22 (0.04)A 1.13 (0.07)A 1.12 (0.10)B 3.35 0.0408

F andP values from reduced-model 1-wayANOVAs on the effect of treatment with site. Different letters within a row indicate significantly different

values (P < 0.05, Tukey’s test).

TABLE 3.

Summary of associated fauna found across all sites
in July 2006.

Severn Patuxent York Machipongo

Number of species 22 35 63 48

Number of individuals 17,009 32,419 40,695 4,311

Biomass of associated

fauna, g

167.95 571.05 213.2 31.71

Biomass of oysters, g 456.11 781.05 1,371.05 22.59

Biomass index

for associated fauna*

0.37 0.73 0.16 1.4

* Ash-free dry weight of associated fauna/ash-free dry weight of oysters.
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C. virginica reefs was significantly greater than the number
associated with C. ariakensis reefs (Patuxent: F ¼ 7.77, P ¼
0.0048; York: F¼ 8.42,P¼ 0.0025, Fig. 4).When oyster species
coexisted inmixed assemblages, standardized abundances at the
Patuxent River were similar to those found in C. virginica reefs,

whereas those in the York River were similar to C. ariakensis
reefs.

Standardized total ash-free dry weights of reef-associated
fauna also showed treatment effects at the Patuxent and the

YorkRiver sites, but not at theMachipongo or the SevernRiver
sites (Fig. 5). Once again, values were higher for C. virginica
reefs than for C. ariakensis reefs (Patuxent: F ¼ 4.23, P ¼
0.0350; York: F¼ 5.43, P¼ 0.0169). Mixed-oyster species reefs
had values that were intermediate, yet overlapping.

Associated Fauna: Species Composition

A total of 78 different species were found throughout this
study, including polychaete worms (28 species), bivalves (11

species), amphipods (10 species), crabs (7 species), fishes (6
species), shrimps (2 species), cnidarians (1 species), and isopods
(1 species). A complete list of all species and the sites at which

they occurred is presented in Table 6. Standardized abundance
and biomass data was used to determine which species domi-
nated samples from each site (Table 7).

Dominant species (defined as those comprising at least 1%
of the total abundance of organisms) found at the subtidal site
of lowest salinity (Severn) in July 2006 included an errant

polychaete (Neanthes succinea), 3 amphipods (Apocorophium
lacustre, Apocorophium simile, and Melita nitida), the white-
fingered mud crab (Rhithropanopeus harrisii), unidentified

juvenile xanthid crabs (all with a carapace width [CW] < 5 mm),
and the naked goby, Gobiosoma bosc. At this site, standardized

abundances of all dominant species, with the exception of the
juvenile xanthids, were similar across live oyster treatments.
Once standardized by total oyster biomass, C. virginica reefs

supported higher numbers of the juvenile xanthids than their
nonnative counterparts (C. ariakensis), with intermediate, over-
lapping values found on reefs of mixed oyster species (F¼ 5.45,
P ¼ 0.0166).

Dominant species at the Patuxent River site included
N. succinea, the mud crab Eurypanopeus depressus, the amphi-
pods Gammarus palustris and M. nitida, and the bivalves

Ischadium recurvum,Macoma balthica, andMya arenaria.Here,
4 of the 7 dominants displayed significant treatment effects.
Standardized abundances of N. succinea, E. depressus,

G. palustris, and M. arenaria were all higher in C. virginica
cages than inC. ariakensis cages (P < 0.0196 in all cases).Mixed-
oyster species cages also contained significantly lower numbers
of N. succinea, E. depressus, and G. palustris compared with

C. virginica cages, although numbers of M. arenaria did not
differ from the other live oyster treatments.

At the York River site, dominant species included polychaete

worms (Demonax microphthalmus, Heteromastus filiformis,
Loimia medusa, and N. succinea), amphipods (Caprella penantis,
A. lacustre, Elasmopus levis, and M. nitida), the mud crab

E. depressus, unidentified juvenile xanthid crabs (all <5 mm
CW), the naked goby (G. bosc), and the gastropod Crepidula
fornicata. C. virginica reefs at this site supported greater numbers

of all dominant species per gram of oyster biomass than
C. ariakensis reefs (P # 0.015 in all cases). With 1 exception
(C. fornicata), when oyster species coexisted, those reefs also

TABLE 4.

Mean (and SD) of community metrics (species richness, Pielou’s evenness, Shannon-Weiner diversity, dominance)
for each treatment by site.

Community Metric

Treatment

F Value P ValueC. ariakensis C. virginica Mixed Species Shell Only

Species Richness (S)

Severn 11.2 (1.0) 10.7 (1.2) 11.8 (1.2) 12.8 (1.8) 2.91 0.0597

Patuxent 15.0 (3.6) 16.5 (1.5) 16.3 (2.9) 18.2 (1.5) 1.50 0.2444

York 33.5 (6.3) 37.8 (1.9) 33.5 (3.3) 34.8 (6.5) 1.03 0.3995

Machipongo 16.7 (4.9) 15.5 (3.1) 15.5 (6.5) 12.5 (1.6) 0.77 0.5246

Pielou’s evenness (J#)
Severn 0.60 (0.90) 0.63 (0.12) 0.61 (0.11) 0.73 (0.05) 2.26 0.1123

Patuxent 0.45 (0.11) 0.42 (0.08) 0.45 (0.08) 0.47 (0.10) 0.22 0.8784

York 0.58 (0.05) 0.58 (0.07) 0.64 (0.05) 0.59 (0.05) 1.58 0.2263

Machipongo 0.72 (0.09) 0.73 (0.06) 0.78 (0.07) 0.76 (0.03) 1.24 0.3230

Shannon-Weiner diversity (H#)
Severn 1.44 (0.18)B 1.50 (0.28)AB 1.50 (0.24)AB 1.85 (0.15)A 4.10 0.0202

Patuxent 1.21 (0.39) 1.18 (0.21) 1.26 (0.29) 1.36 (0.32) 0.36 0.7813

York 2.04 (0.12) 2.08 (0.25) 2.24 (0.19) 2.10 (0.25) 1.20 0.3346

Machipongo 1.98 (0.25) 1.99 (0.11) 2.06 (0.31) 1.90 (0.16) 0.44 0.7245

Dominance

Severn 1.56 (0.11)AB 1.47 (0.21)B 1.62 (0.21)AB 1.91 (0.28)A 4.47 0.0148

Patuxent 1.92 (0.52) 2.13 (0.18) 2.14 (0.41) 2.48 (0.31) 2.14 0.1276

York 4.32 (0.73) 4.84 (0.31) 4.51 (0.43) 4.66 (0.75) 0.90 0.4569

Machipongo 2.97 (0.65) 2.70 (0.46) 3.04 (0.99) 2.44 (0.28) 0.98 0.4227

F and P values from reduced-model 1-way ANOVAs on the effect of treatment within site. Different letters within a row indicate significantly

different values (P < 0.05, Tukey’s test).
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supported lower numbers of dominant species per gram of oyster
biomass than reefs comprised only of C. virginica.

Using standardized abundance data at the high-salinity,
intertidal Machipongo River site, 16 dominant species were

identified. These included polychaetes (Leitoscoloplos fragilis,
Mediomastus ambiseta, N. succinea, Streblospio benedicti, and
Tharyx acutus), the amphipod M. nitida, the isopod Cyathura

burbancki, gastropods (Boonea impressa, Nassarius vibex), crabs
(E. depressus, Panopeus herbstii), unidentified juvenile xanthid
crabs (all <5 mm CW), and Uca spp. (all <5 mm CW), ne-

merteans, and 2 insect species. At this site, similar standardized
abundances were seen across treatments for all dominant species.

The species comprising at least 1% of the standardized total
biomass at each site were different than dominants calculated

using abundance data (Table 8). At the Severn River site, domi-
nant species for standardized biomass data included 3 fishes, 4

crabs, 1 polychaete, and 1 bivalve (see Table 7 for the species list).
At the Patuxent River site, 17 species dominated ash-free dry
weights: 6 bivalves, 2 crabs, 2 fishes, 4 amphipods, 1 polychaete, 1
gastropod, and 1 cnidarian. Biomass dominants at the York site

included 13 different species: 5 fishes, 3 crabs, 4 polychaetes, and 1
bivalve. At the intertidal site, only 5 species dominated the
biomass of reef-associated fauna: 3 crabs and 2 gastropods.

Standardized ash-free dry weights of biomass dominants
were all similar across live oyster treatments at the Severn,
Patuxent, and Machipongo sites. At the York River location, 3

species exhibited treatment effects: the polychaete D. micro-
phthalmus, themud crabE. depressus, and the skillet fishGobiesox
strumosus. As previously observed for dominant species by
abundance,C. virginica reefs supported a higher biomass of these

species than did either C. ariakensis or mixed-oyster species reefs
(P # 0.007).

TABLE 5.

Mean (and SD) of total abundance and biomass of associated fauna for each treatment by site.

Associated Fauna

Treatment

F Value P ValueC. ariakensis C. virginica Mixed Species

Standardized Total Abundance

Severn 23.8 (8.0) 38.9 (12.9) 34.6 (15.1) 2.37 0.1273

Patuxent 22.6 (8.3)B 99.0 (59.3)A 38.3 (13.4)A 7.77 0.0048

York 16.8 (5.8)B 154.1 (116.2)A 15.7 (3.23)B 8.42 0.0035

Machipongo 2,296 (3,250.0) 191.8 (148.5) 418.0 (546.0) 2.21 0.1447

Standardized Total Biomass

Severn 0.31 (0.11) 0.35 (01.6) 0.31 (0.12) 0.17 0.8491

Patuxent 0.35 (0.29)B 1.40 (1.04)A 0.57 (0.37)AB 4.23 0.0350

York 0.09 (0.04)B 0.48 (0.36)A 0.15 (0.11)AB 5.43 0.0169

Machipongo 21.6 (32.2) 2.58 (3.14) 3.15 (3.98) 1.97 0.1733

F and P values from reduced-model 1-way ANOVAs on the effect of treatment within site. Data for each oyster treatment were standardized by

oyster biomass. Different letters within a row indicate significantly different values (P < 0.05, Tukey’s test).

Figure 4. Mean total abundance of associated fauna per sample standardized by oyster biomass for all treatments containing live oysters across all sites.

(A) Severn. (B) Patuxent. (C) York. (D) Machipongo. Significant within-site treatment effects are indicated by different letters above the SE bars.
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Multivariate Analyses

Nonmetric multidimensional scaling plots and analysis of

similarity of standardized abundances of associated fauna high-
light treatment effects at both the York and Patuxent River sites
(Fig. 6). The benthic communities associated with C. virginica

experimental reefs were different from those associated with both
C. ariakensis and mixed oyster reefs at both the Patuxent and
YorkRiver sites. Communities associated with the mixed-species

reefs did not differ from the C. ariakensis reefs. Reef-associated
communities at the Machipongo and Severn River sites did not
differ between treatments. Multivariate analyses utilizing the
biomass of associated organisms standardized by oyster biomass

yielded results similar to those obtained from abundance data,
although treatments effects were only observed at the YorkRiver
site, where once again, C. virginica reef communities differed

from those supported by C. ariakensis and mixed-oyster species
reefs (Fig. 7).

DISCUSSION

Although results from short-term laboratory trials and
anecdotal observations of C. ariakensis in its native range have
raised doubt over the species� ability to form the dense aggrega-
tions observed in C. virginica, a growing body of evidence

suggests that the Suminoe oyster is a reef-building Crassostrea
species. After approximately 8 mo of deployment, comparisons
of 3 distinct habitat complexity indices (maximum vertical reef

height, average reef height, and surface rugosity) revealed no
significant differences between native and nonnative experimen-
tal reefs, regardless of location within the Chesapeake Bay

region. Despite evidence of negative effects of interspecific
competition on the growth of C. ariakensis at the low- and
mid-salinity subtidal sites (Kingsley-Smith et al. 2009), experi-
mental reefs containing a mixture of both oyster species had

similar measures of habitat complexity when compared with
monospecific reefs.

Site effects on complexity indices were common, particularly
for treatments containing C. ariakensis. Because of its relative

intolerance of intertidal exposure (Luckenbach et al. 2005a,
Kingsley-Smith & Luckenbach 2008, Wang et al. 2008, Yoon
et al. 2008), survival of C. ariakensis at our intertidal site, the

Machipongo River, VA, was markedly low (Kingsley-Smith
et al. 2009), negatively affecting all indices of habitat complexity
for treatments containing Suminoe oysters at this location.

Maximum and average vertical reef heights among native oyster
treatments, however, were also significantly lower at this in-
tertidal site. To explore the limits ofC. ariakensis reef formation,
we intentionally placed our experimental reefs near the upper

limit of native oyster reefs and acknowledge that this resulted in
harsher physical conditions than those occurring on many
natural intertidal reefs.

Among subtidal sites, reefs containing C. ariakensis (both
monospecific and mixed-species assemblages) had significantly
higher complexity indices at the higher salinity site (York

River). We largely attribute this to the positive relationship
between salinity and the growth rate of C. ariakensis (Calvo
et al. 2001, Grabowski et al. 2004, Hudson et al. 2005, Paynter
et al. 2008).

Although qualitative differences in reef morphologies are
apparent when visually comparing native and nonnative treat-
ments, particularly those grown at the higher salinity subtidal

sites, such observations did not translate to quantitative
differences in any of the complexity indices measured in this
study. Although treatment effects on maximum and average

vertical reef heights were not expected, because there were no
discernible visual differences in these characteristics during
sampling events, differences in rugosity indices were antici-

pated. Although the overall amount of interstitial space present
within reefs may have been similar among oyster species, the
arrangement of that space varied. C. virginica reefs contained
a tight arrangement of individuals, resulting in a high number of

small crevices;C. ariakensis reefs grown at high-salinity subtidal

Figure 5. Mean total biomass of associated fauna per sample standardized by oyster biomass for all treatments containing live oysters across all sites.

(A) Severn. (B) Patuxent. (C) York. (D) Machipongo. Significant treatment effects are indicated by different letters above the SE bars.
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TABLE 6.

Complete list of all species found in July 2006 samples across all sites.

Taxonomic Group Species Severn Patuxent York Machipongo

Amphipods

Apocorophium lacustre X X X

Apocorophium simile X

Caprella equilibra X

Caprella penantis X X

Cymadusa compta X

Elasmopus levis X X X

Gammarus mucronatus X X

Gammarus palustris X X X

Melita nitida X X X X

Paracaprella tenuis X X

Arthropoda

Limulus polyphemus X

Unidentified insect X

Unidentified insect larva X

Bivalves

Anadora transversa X

Gemma gemma X X X

Geukensia demissa X X X

Ischadium recurvum X X

Macoma balthica X X X

Macoma mitchelli X

Macoma tenta X

Mercenaria mercenaria X X

Mulinia lateralis X X X

Mya arenaria X X X

Mytilus edulis X

Cnidarian

Unidentified jelly X X

Decapod crustaceans

Alpheus heterochaelis X X

Callinectes sapidus X X

Dyspanopeus sayi X X X

Eurypanopeus depressus X X X X

Hexapanopeus angustifrons X X

Palaemonetes pugio X X

Panopeus herbstii X X X X

Rhithropanopeus harrisii X X X

Uca spp. unidentified

juvenile xanthid

X X X X

Fishes

Anguilla rostrata X X

Chasmodes bosquianus X X

Gobiesox strumosus X X X

Gobiosoma bosc X X X X

Hypsoblennius hentz X

Opsanus tau X

Gastropods

Astyris lunata X X

Acteocina canaliculata X X

Boonea bisuturalis X X

Boonea impressa X X X

Crepidula convexa X

Crepidula fornicata X X

Crepidula plana X

Nassarius vibex X X X

Neverita duplicata X

Rictaxis punctostriatus X X X

Urosalpinx cinerea X X

Continued on next page
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sites more frequently had growth trajectories in a more hori-

zontal direction, leading to greater angles between individuals.
In retrospect, the ‘‘chain-link’’ method of assessing habitat
heterogeneity may not have been the most appropriate choice,

given the nature of the visual discrepancies in morphology
between oyster treatments. Despite its widespread use and
general acceptance as an indicator of habitat complexity in

aquatic systems, the rugosity index cannot discriminate between
the shape and size of components relative to the scale of the
topography under investigation (Roberts & Ormond 1987,
Shumway et al. 2007). For example, a complex, small-scale

topography would have the same rugosity value as a simple,
large-scale topography (Roberts & Ormond 1987). We recom-
mend that future studies of habitat complexity in oyster reefs

include more novel approaches to complexity comparisons, such
as measuring the distance between individual oysters, or the
angles at which individual oysters meet one another.

Although necessary for biosecurity reasons, the cages in
which the oysters were deployed may have indirectly affected
oyster survival (Kingsley-Smith et al. 2009), because their

presence likely reduced predation rates by limiting the access
of larger predators such blue crabs (Callinectes sapidus) and
cownose rays (Rhinoptera bonasus). Particularly at small sizes,
C. ariakensis shells are structurally weaker than those of the

native species, allowing for greater susceptibility to predation

(Bishop& Peterson 2006, Newell et al. 2007). Therefore, our use

of cages in this study may have disproportionately decreased
mortality rates of juvenileC. ariakensis, which in turn may have
affected habitat complexity. It is also possible that observed

similarities in habitat complexity may begin to diverge as the
reefs mature beyond the age at which they were assessed in the
current study. To address this, additional analyses of reef

complexity at later time points (e.g., 2007 sampling events de-
scribed in Kingsley-Smith et al. (2009)) are underway (Harwell
et al. in preparation).

As was the case for habitat complexity, differences among

reef-associated faunal assemblages were more pronounced be-
tween sites than between treatments within sites. Lowest overall
abundances were found at the intertidal site, reflecting low oyster

survival, growth, and habitat complexity. At subtidal sites, there
was a trend of increasing total abundance with increasing salinity
across experimental treatments. Similarly, the high-salinity sub-

tidal site (York River) supported higher species richness, domi-
nance, and diversity values. Our observation of a positive
relationship between species richness and salinity in oyster reef

communitieswas first suggested byWells (1961), whodocumented
that a majority of oyster reef inhabitants were limited in their
upstream distribution by a reduction in salinity. A more recent
study by Tolley et al. (2005) also revealed that several community

metrics (organism abundance, biomass, and diversity) increased

TABLE 6.

Continued

Taxonomic Group Species Severn Patuxent York Machipongo

Isopods

Cyathura burbancki X

Nemerteans X X

Polychaetes

Capitella capitata X

Clymenella torquata X

Cyrtopleura costata X

Demonax microphthalmus X

Edotia triloba X

Eteone heteropoda X X

Glycera dibranchiata X

Hemipodus roseus X

Heteromastus filiformis X X X

Hobsonia florida X

Hydroides dianthus X

Leitoscoloplos fragilis X X

Lepidontus sublevis X

Loimia medusa X X

Lysidice ninetta X

Mediomastus ambiseta X

Neanthes succinea X X X X

Parahesione luteola X X

Pectinaria gouldii X X

Petriocolaria pholadiformis X

Piromis eruca X

Podarke obscura X

Polydora websteri X

Sabellaria vulgaris X

Scoletoma tenuis X

Streblospio benedicti X X

Stylocus sp. X X

Tharyx acutus X
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downstream in a Florida estuary. Furthermore, they observed

that salinity appeared to be more important than abundance of
living oysters as a predictor of increased community metrics
(Tolley et al. 2005). Similarly, our findings suggest that, at least

at the scale addressed here, salinity-driven effects on reef biota are
greater than those of the reef-forming species in question.

Significant treatment effects on community metrics were

rare, even when comparing live oyster treatments with the shell-
only treatment. Although average total abundance per sample
was higher for live oyster reefs than for the shell-only treatment,

no significant differences in species richness or evenness were

detected. At the low-salinity location (Severn River, MD),
Shannon-Weiner diversity was actually higher for the treatment
without live oysters (shell only). The importance of the biological

properties of live bivalves in determining the structure of
associated macroinvertebrate assemblages has been assessed by
several previous studies, many of which have documented similar

colonization of mimics, live, and dead bivalves (Crooks & Khim
1999, Tolley & Volety 2005), although that is not always the case
(Boudreaux et al. 2006, Norling & Kautsky 2007). Most dead

TABLE 7.

Reduced-model 1-way ANOVA results for the effect of live oyster treatment on individual species abundances comprising at least
1% of total standardized abundance at each site.

Site Species F Value P Value Ranking

Severn

Apocorophim lacustre 2.52 0.1140

Apocorophium simile 1.66 0.2230

Gobiosoma bosc 0.72 0.5033

Melita nitida 1.34 0.2908

Neanthes succinea 0.35 0.7101

Rhithropanopeus harrisii 1.91 0.1823

U/I juvenile xanthid 5.45 0.0166 C. v.A mixedAB C. a.B

Patuxent

Eurypanopeus depressus 10.35 0.0015 C. v.A mixedB C. a.B

Gammarus palustris 8.61 0.0032 C. v.A mixedB C. a.B

Ischadium recurvum 2.64 0.1039

Macoma balthica 0.82 0.4583

Melita nitida 0.99 0.3951

Mya arenaria 5.17 0.0196 C. v.A mixedAB C. a.B

Neanthes succinea 13.02 0.0005 C. v.A mixedB C. a.B

York

Apocorophium lacustre 10.30 0.0015 C. v.A mixedB C. a.B

Caprella penantis 5.63 0.0150 C. v.A mixedB C. a.B

Crepidula fornicata 4.97 0.0221 C. v.A mixedB C. a.B

Demonax microphthalmus 28.22 <0.0001 C. v.A mixedAB C. a.B

Elasmopus levis 10.30 0.0015 C. v.A mixedB C. a.B

Eurypanopeus depressus 18.12 <0.0001 C. v.A mixedB C. a.B

Gobiosoma bosc 7.03 0.0070 C. v.A mixedB C. a.B

Heteromastus filiformis 19.69 <0.0001 C. v.A mixedB C. a.B

Loimia medusa 7.71 0.0050 C. v.A mixedAB C. a.B

Melita nitida 22.06 <0.0001 C. v.A mixedB C. a.B

Neanthes succinea 37.01 <0.0001 C. v.A mixedB C. a.B

Unidentified juvenile xanthid 12.17 0.0007 C. v.A mixedB C. a.B

Machipongo

Boonea impressa 0.02 0.9805

Cyathura burbancki 2.76 0.0955

Eurypanopeus depressus 0.31 0.7372

Leitoscoloplos fragilis 0.35 0.7117

Mediomastus ambiseta 1.96 0.1758

Melita nitida 0.19 0.8260

Nassarius vibex 0.74 0.4946

Neanthes succinea 1.63 0.2294

Nemertean 0.63 0.5460

Panopeus herbstii 1.39 0.2797

Streblospio benedicti 1.00 0.3898

Tharyx acutus 0.08 0.9260

Uca spp. 1.12 0.3510

Unidentified insect 2.71 0.0988

Unidentified insect larva 2.64 0.1041

Unidentified juvenile xanthid 0.51 0.6093

Treatments are ranked in descending order. Different letters within a row indicate significantly different values (Tukey’s test). C. v. ¼ C. virginica;

C. a. ¼ C. ariakensis.
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oysters differ structurally from their live counterparts, however,
as the valves of dead oysters typically disarticulate within 12 mo

(Ford et al. 2006). This decrease in vertical height compared with
live oyster reefs has been thought to lead to a decrease in habitat
function. Summerhayes et al. (2009), however, observed that
epibiota were generally more abundant in treatments containing

half shells than in those with whole oysters, suggesting that the
shells offered additional interstitial space and greater surface area
for initial colonization. Whether this relationship changes over

time is not known. The results of the current study, as well as
previous research, indicate that the effects of live oyster presence
on community structure remain poorly understood, largely as

a result of the coupling of oyster presence with increased habitat
complexity.

Without taking oyster biomass into account, the total

numbers of reef-associated organisms were similar among live
oyster treatments, suggesting habitat functional equivalency of
C. ariakensis andC. virginica.However, both oyster survival and
growth varied across and within sites in this study (Kingsley-

Smith et al. 2009). This analysis simply compares the habitat
function of the surviving oysters, not the overall capability of the
species. By normalizing abundance and biomass of reef-associ-

ated fauna in each sample by the oyster biomass, we were better
able to examine the functional equivalency of the 2 oyster species
with regard to habitat provision. The results support functional

equivalency with respect to habitat between oyster species at the
intertidal site, as well as the low-salinity subtidal location. At
subtidal sites with higher salinities (York and Patuxent), how-

ever, habitat function varied between oyster species after the data
were normalized. Here, the mean number and biomass of
organisms associated with C. virginica reefs was significantly

greater than the number associated with C. ariakensis reefs. This
suggests that, if introduced, the nonnative oyster may have less

potential for habitat provision than the native oyster in subtidal
high- and mid-salinity regions of the Chesapeake Bay. The
decreased habitat potential of C. ariakensis in these areas may
be reinforced by increased predation as a result of its weaker shell

(Bishop & Peterson 2006, Newell et al. 2007), or may be offset by
increased growth rates (Calvo et al. 2001, Grabowski et al. 2004,
Hudson et al. 2005, Paynter et al. 2008).

More than 75 species were identified during the current study,
which is the first investigation of benthic community composition
on experimental Suminoe oyster (C. ariakensis) reefs in the

Chesapeake Bay region. Dominant species varied among loca-
tions and included amphipods, bivalves, fishes, decapod crusta-
ceans, gastropods, and polychaete worms. The assemblages

collected during this study were similar to those previously
reported on restored and natural reefs from temperate waters
(Coen et al. 1999, Posey et al. 1999, Rodney & Paynter 2006).
Similar to results for community metrics, the number of domi-

nant species generally increased with increasing salinity. Patterns
of standardized abundances of individual dominant species
largely mirrored those observed for overall abundance, in that

no differences were seen at the intertidal site between live oyster
treatments, and only 1 group (juvenile xanthid crabs) had
increased numbers on native reefs compared with nonnative

treatments at the low-salinity site. Significant increases in in-
dividual species abundances associated with C. virginica treat-
ments were seen predominantly at the subtidal site of highest

salinity (York), with some occurrences at the upper mesohaline
location (Patuxent). We observed increased abundances of all
dominant species on native oyster reefs at theYorkRiver site and

Figure 6. Nonmetric multidimensional scaling plots for standardized abundances of associated fauna at all sites. (A) Severn. (B) Patuxent. (C) York. (D)

Machipongo. Significant analysis of similarity results were found only at the Patuxent and York River sites, where the C. virginica treatment differed

significantly from both the C. ariakensis-only and mixed-species treatments.
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increased abundances of 50% of dominants at the Patuxent
River site, further supporting a greater potential for habitat
provision by native oysters in subtidal areas of high salinity.

Unlike standardized abundance data for individual domi-

nant species, standardized biomass data for dominant reef-
associated fauna revealed very few treatment effects. We
observed increased biomass on native oyster treatments for

only 3 dominant species at the high-salinity subtidal site:
D. microphthalmus, a polychaete worm; E. depressus, a xanthid
crab; and G. strumosus, the skillet fish. In all other cases,

standardized biomasses of species comprising at least 1% of
the total biomass were similar regardless of oyster species. At
the York and Patuxent sites, where differences in habitat

complexity were visually observed but not quantitatively
detected, oyster species had a greater influence on reef-associ-
ated species that were dominant in abundance, rather than
biomass. In other words, it was mostly the smaller, more prolific

organisms that were significantly affected by oyster species.
This suggests that oyster species may have significantly im-
pacted the size of organisms able to use the reefs as habitat. It

appears that C. virginica reef communities at this location were
comprised of a greater number of relatively smaller individuals,
and that those found on C. ariakensis reefs, although lower in

standardized abundances, were larger in size.
Results from multivariate analysis of similarity compari-

sons, which take into account both species composition and
relative abundance, revealed similar patterns to those observed

from univariate ANOVA comparisons. Once again, oyster
species did not affect community structure at the low-salinity
(Severn) or intertidal (Machipongo) site. At both subtidal sites

of higher salinity (York and Patuxent), the benthic communities

associated with C. virginica reefs were unique among live oyster
treatments, although the mechanism behind this difference
remains unclear. Although community differences may have
been related to subtle differences in complexity that we were

unable to quantify using the rugosity index, larval recruitment
dynamics, chemical cues, or other unknown factors may also
have been involved.

Although site and treatment effects of oyster species on reef-
associated fauna were observed, we acknowledge the limitation of
this study in estimating abundance and biomass of faunal

assemblages occurring on natural oyster reefs. Cage presence likely
reduced predator–prey interactions through the exclusion of larger
predators, such as large blue crabs, cownose rays, striped bass

(Morone saxatilis), sheepshead (Archosargus probatocephalus), and
oyster toadfish (Opsanus tau). A lack of larger predators may
have resulted in increased abundances of prey species. It may
have also increased the effectiveness of intermediate predators

via trait-mediated effects (Grabowski 2004). Although our
results should not be directly compared with other studies
estimating tertiary production on oyster reefs, the relative

comparisons made between our experimental oyster treatments
remain valid.

Should an introduction of C. ariakensis occur, it is most

likely that the 2 species would co-occur on some reefs. In this
regard, our results from the mixed-species treatment are in-
formative. Although significant differences were found between
the benthic communities supported by native and nonnative

experimental reefs, mixed-oyster species treatments most often
displayed patterns similar to those of monospecific C. ariakensis
reefs. Although the mechanism behind this remains unknown

andmay be unrelated to reef morphology, more robust measures

Figure 7. Nonmetric multidimensional scaling plots for standardized biomass of associated fauna at all sites. (A) Severn. (B) Patuxent. (C) York. (D)

Machipongo. Significant analysis of similarity results were found only at the York, where the C. virginica treatment differed significantly from both the

C. ariakensis-only and mixed-species treatments.
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of habitat complexity, such as distance between individual

oysters or the angles at which they meet, may aid in the
elucidation of this mechanism.

This study indicates that, if introduced to the Chesapeake
Bay region, the ability of C. ariakensis to serve as a functional

equivalent of the native oyster with respect to habitat provision
is likely to vary with location. Poor survival of C. ariakensis in

intertidal areas suggests that C. virginica would be a better

provider of habitat in such areas, although differences in
intertidal reef communities were not detected here. A degree
of functional equivalency is more likely in low-salinity subtidal
areas, where the growth of the 2 oyster species is most similar.

Pronounced differences in benthic community structure are
most likely to occur in the lower reaches of Chesapeake Bay.

TABLE 8.

Reduced-model 1-way ANOVA results for the effect of live oyster treatment on individual species biomass comprising at least 1% of
total standardized biomass at each site.

Site Species F Value P Value Ranking

Severn

Anguilla rostrata 0.62 0.5513

Eurypanopeus depressus 2.37 0.1276

Gobiesox strumosus 1.11 0.3563

Gobiosoma bosc 0.20 0.8178

Mya arenaria 0.80 0.4688

Neanthes succinea 0.04 0.9566

Panopeus herbstii 0.79 0.4708

Rhithropanopeus harrisii 1.95 0.1777

Unidentified juvenile xanthid 2.50 0.1154

Patuxent

Apocorophium lacustre 2.52 0.1141

Boonea bisuturalis 0.51 0.6090

Eurypanopeus depressus 1.81 0.1982

Gammarus mucronatus 1.29 0.3039

Gammarus palustris 2.14 0.1524

Gemma gemma 1.23 0.3190

Gobiesox strumosus 1.04 0.3762

Gobiosoma bosc 0.91 0.4229

Ischadium recurvum 1.23 0.3192

Macoma balthica 1.54 0.2457

Macoma mitchelli 1.30 0.3021

Melita nitida 0.40 0.6756

Mulinia lateralis 0.86 0.4423

Mya arenaria 2.45 0.1201

Neanthes succinea 0.18 0.8339

Panopeus herbstii 1.79 0.2005

Unidentified cnidarian 1.17 0.3375

York

Anguilla rostrata 0.97 0.4003

Callinectes sapidus 1.04 0.3770

Chasmodes bosquianus 2.02 0.1666

Demonax microphthalmus 10.97 0.0012 C. v.A mixedB C. a.B

Eurypanopeus depressus 10.73 0.0013 C. v.A mixedB C. a.B

Gobiesox strumosus 6.94 0.0074 C. v.A mixedB C. a.B

Gobiosoma bosc 2.14 0.1527

Heteromastus filiformis 0.81 0.4642

Hypsoblennius hentz 0.68 0.5226

Loima medusa 0.99 0.3935

Mya arenaria 1.58 0.2394

Neanthes succinea 3.51 0.0562

Panopeus herbstii 0.59 0.5654

Machipongo

Astyris lunata 1.00 0.3911

Boonea impressa 1.09 0.3628

Dyspanopeus sayi 0.78 0.4779

Eurypanopeus depressus 0.70 0.5117

Panopeus herbstii 0.88 0.4370

Treatments are ranked in descending order. Different letters within a row indicate significantly different values (P < 0.05, Tukey’s test). C. v. ¼ C.

virginica; C. a. ¼ C. ariakensis.
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