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ABSTRACT Survival and growth of triploid Crassostrea virginica and triploid C. ariakensis were investigated at four sites

surrounding Chesapeake Bay, United States, that varied in salinity, tidal regime, water depth, predation intensity and disease

pressure. Four experimental treatments were established at each site:C. virginica;C. ariakensis; 50:50 ofC. virginica:C. ariakensis;

and shell only. Oysters were deployed at mean shell heights of 12.80 mm and 13.85 mm (C. virginica and C. ariakensis,

respectively), at an overall density of 347.5 oysters m–2. Oyster survival and growth varied significantly with site and species.

Survival was significantly higher inC. virginica thanC. ariakensis at the intertidal site, and significantly higher inC. ariakensis than

C. virginica at the highest salinity, subtidal site. Survival did not differ significantly between species at the mid and low salinity,

subtidal sites. For both species, survival differed significantly between sites, with lowest survival in both species occurring at the

intertidal site. Among the subtidal sites, C. virginica survival varied inversely with salinity, whereas C. ariakensis had the lowest

survival at the mid salinity site. Eight months after deploymentC. ariakensis were significantly larger than C. virginica at all sites.

This difference generally persisted throughout the experiment, though the size differences between oyster species at the lowest

salinity site were small (< 10%). Shell heights within single-species treatments differed significantly between sites; highest growth

rates were observed at the high salinity, subtidal site, whereas lowest growth rates were observed at the high salinity, intertidal site.

At low andmid salinity subtidal sites,C. ariakensis shell heights were significantly greater in the single-species treatment compared

with the mixed-species treatment. Perkinsus marinus infections occurred in both species at all sites, with prevalences varying

between sites. In C. virginica, moderate and high intensity infections were only common at the two higher salinity sites, whereas

infections in C. ariakensis were generally low to rare. Haplosporidium nelsoni infections in C. virginica were only observed at the

two higher salinity sites and prevalences were generally low. Two out of 53C. ariakensis tested at the high salinity, subtidal site had

rare H. nelsoni infections. Bonamia spp. infections were never observed. Our study supports previous laboratory findings and

observations from its native range that C. ariakensis survives poorly in intertidal habitats. In subtidal habitats, however,

C. ariakensis displayed broad environmental tolerances, often exceeding native oyster survival and growth rates. Post-introduction

C. ariakensis populations would be shaped by the survival and growth patterns described here, but also by their reproductive

success, larval survival, predator-prey interactions and prevailing disease dynamics.
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INTRODUCTION

Populations of the native eastern oyster, Crassostrea virgin-
ica along much of the mid-Atlantic coast of the United States
have declined during the last century because of a combination

of over-harvesting (Gross & Smyth 1946), habitat degradation
(Rothschild et al. 1994), reduced water quality (Seliger et al.
1985), disease (Ford & Tripp 1996, Lenihan et al. 1999) and the

interactions among these factors (Lenihan & Peterson 1998).
Newell (1988) estimated that the extant population of C.
virginica in Chesapeake Bay was approximately 1% of the
biomass present a century earlier. While many factors have

contributed to this decline, epizootics of two oyster diseases,

Perkinsus marinus (Dermo) andHaplosporidium nelsoni (MSX),
have played a major role over the past several decades. A

declining oyster population and the consequent collapse of the
fishery have prompted the consideration of intentionally intro-
ducing a non-native oyster species to the region (National

Research Council 2004). Mann et al. (1991) and Gottlieb and
Schweighofer (1996) have argued that introducing a non-native
oyster species with greater resistance to disease would restore
both the ecosystem services once provided by C. virginica and

the commercial oyster fishery.
While there is a substantial historical precedent for intro-

ducing a non-native oyster species to replace a declining native

oyster species (seeMann 1979,Mann 1983, Chew 1990, Ruesink
et al. 2005 for reviews), such introductions into marine and
estuarine ecosystems raise serious concerns (Cohen & Carlton

1998, Pew Oceans Commission 2003). Naturalization of the
Pacific oyster,Crassostrea gigas in northwest Europe is a classic
example of the unanticipated spread of a non-native species
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beyond its intended range. C. gigas was intentionally intro-
duced to the coastal waters of several European countries

during the 1960s and 1970s (e.g., Walne & Helm 1979, Grizel
& Héral 1991, Drinkwaard 1999), primarily for aquaculture
purposes. Low seawater temperatures were expected to prevent
reproduction, thereby restricting its distribution to the intro-

duction sites (Drinkwaard 1999). Wild C. gigas populations,
however, have spread rapidly through much of northwest
Europe, from southern Portugal to northern Germany (Wehr-

mann et al. 2000, Cardoso et al. 2007), in some cases impacting
native benthic communities (e.g., Reise 1998, Reise et al. 2006).
The uncontrolled expansion of C. gigas in this region is

testimony to the need for caution when considering a deliberate
non-native introduction (see McKindsey et al. 2007 for review).
Given the widely reported ecological and economic costs of
non-native species (e.g., Pimentel et al. 2000), deliberate intro-

ductions warrant very careful consideration (see Mack et al.
2000, Sala et al. 2000, Lodge et al. 2006).

An initial study by Calvo et al. (1999) examined the potential

for introducing C. gigas to the region because of its known
disease resistance and long history as an aquaculture species.
These authors observed that C. gigas had comparable or lower

growth rates in mid and low salinity waters and was more
susceptible to infestation by spionid polychaetes (Polydora
spp.) than C. virginica. In a later study of the Suminoe oyster,

Crassostrea ariakensis, Calvo et al. (2001) reported low disease
susceptibility, limited Polydora spp. infestations, and high
survival and growth rates over a range of salinities, prompting
the current consideration of its introducing to Chesapeake Bay

(National Research Council 2004).
The initial study by Calvo et al. (2001) and subsequent field

studies (Grabowski et al. 2004, Hudson et al. 2005, Paynter

et al. 2008) comparing the growth of triploid C. ariakensis and
C. virginica used cultchless, triploid C. ariakensis grown in
predator-exclusion cages suspended above the bottom. Two of

these studies (Calvo et al. 2001, Grabowski et al. 2004)
compared triploid C. ariakensis to diploid C. virginica and thus
must be interpreted with caution because triploidy enhances
growth rates in oysters (Allen & Downing 1986). In addition,

the suspension of oysters above the bottom in predator-
exclusion cages limits their exposure to the stresses commonly
encountered in benthic environments, including predation,

siltation, food limitation and inter- and intraspecific competi-
tion. When Grabowski et al. (2004) evaluated the impacts of
suspension above the bottom on C. ariakensis, C. gigas and

C. virginica they found that while all three species exhibited
higher survival and growth rates when suspended above the
bottom, the magnitude of this difference was greater for triploid

C. ariakensis than for either triploid C. gigas or diploid
C. virginica. Finally, all prior studies have stocked predator
exclusion cages with a single species of oyster, precluding
evaluation of the effects of interspecific competition between

C. ariakensis and C. virginica.
In an effort to provide a more realistic assessment of the

potential performance of C. ariakensis if introduced to the

Chesapeake Bay region, we compared the survival and growth
of triploid C. virginica and triploid C. ariakensis in both
intertidal and subtidal ‘‘natural’’ bottom habitats, across a

range of salinities. Oysters of the two species were set on shell
and grown side-by-side in single-species and mixed-species
treatments. Our objective was to assess the capacity of

C. ariakensis to survive and grow in bottom reef environments,
and to tolerate the interspecific competition it would face if

introduced to Chesapeake Bay and coastal environments along
the mid-Atlantic seaboard.

MATERIALS AND METHODS

Production of Triploid Oysters

To reduce the risk of an unintentional introduction of

C. ariakensis and to ensure that results were not confounded
by differences in ploidy, all oysters used in these experiments
were triploids produced by the Aquaculture Genetics and

Breeding Technology Center (ABC) at the Virginia Institute of
Marine Science (VIMS) in Gloucester Point, VA. Triploid
C. ariakensis were produced in a quarantined hatchery in
accordance with protocols established by the International

Council for the Exploration of the Seas (ICES 1988). For both
species, triploids were produced by crossing tetraploid males
with diploid females, as described in Guo et al. (1996). Oysters

were spawned on 16 June 2005 and larvae were set on aged oyster
shell in the first week of July 2005. To facilitate species
identification in mixed-species treatments, C. virginica were

set on left valves and C. ariakensis were set on right valves. Prior
to deployment, the ploidy status of 3000 randomly selected
C. ariakensis was assessed using flow cytometry, as described in

Guo & Allen (1994). Analyses revealed the presence of a single
diploid oyster, satisfying the criteria set by the United Sates
Army Corps of Engineers permit for deployment (<0.1% diploid
oysters).

After setting, juvenile oysters (spat) were held for approxi-
mately three months in land-based flow-through tanks at
ambient temperature and salinity at the VIMS Eastern Shore

Laboratory (ESL) in Wachapreague, VA and the University of
Maryland Center for Environmental Science’s (UMCES) Horn
Point Laboratory (HPL) in Cambridge, MD. During this

holding period, excess spat were removed from shells to achieve
target densities of 5–13 spat per shell. Oyster shells were then
randomly assigned either to an experimental treatment or to be
recounted and measured for final estimates of deployment sizes

and densities.

Study Sites

Four field sites were selected to encompass a range of tidal
environments, predicted salinities, predicted disease pressures
and predicted relative predator abundances (Table 1, Fig. 1). The

high salinity Machipongo River location was an intertidal site
chosen to reflect the distribution of native oysters in the salt
marsh lagoon system on the eastern side of the Delmarva

Peninsula. The three sites within Chesapeake Bay were all
subtidal, and included one high salinity site (York River, VA),
one mid salinity site (Patuxent River, MD) and one low salinity
site (Severn River, MD). The York River site was shallower (1–2

m) than the two Maryland sites (3–4 m). At each site a YSI 600
XLM meter measured temperature and salinity at 15-min
intervals throughout the course of the 23 mo experiment.

Experimental Design

The experiment used a 4 3 4 block design with one replicate
of each treatment in each of two blocks at each of four sites. The
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blocking factor, proximity to shore, was chosen to account for
differences in elevation of the substratum between blocks at the
intertidal site and was expected to have minimal influence at

subtidal locations. The four experimental treatments within
each block consisted of two single-species treatments (C. virgin-
ica only and C. ariakensis only), one mixed-species treatment

(50:50 C. virginica: C. ariakensis), and a control treatment
(oyster shell only). The shell only treatment served as a control
for the presence of live oysters for investigations of differences

in macrofaunal diversity and abundance between treatments to
be reported elsewhere (Harwell et al. in prep). The other
treatments were used to examine the effects of three factors

and their interactions—site (four total), species (C. ariakensis or
C. virginica; nested within block) and single/mixed (single- or
mixed-species treatment, used to investigate the effects of the
presence or absence of interspecific competition, nested within

species)—on survival and growth.
Regrettably the process of producing triploids from diploid-

tetraploid crosses results in a small proportion of diploid

offspring. For this reason, treatment plots at each site were
arranged to maximize the distance between treatments contain-
ing C. ariakensis, thereby reducing the likelihood of successful

fertilization between diploids across plots during the course of
the experiment. To further increase biosecurity, the eight
experimental treatment plots at each site were deployed within
large galvanized steel-framed cages (3.05m 3 3.05 m 3 0.61 m

high; one replicate cage per treatment per block at each site).
The cage design was a compromise between biosecurity

concerns and the desire to allow predation, facilitate adequate

water flow and reduce fouling. The design was intended to allow
predation by small benthic organisms such as xanthid and
portunid crabs, and gastropods, while preventing the distur-

bance or loss of oysters caused by large predators (e.g., cownose
rays, Rhinoptera bonasus), human activities (e.g., illegal fishing)
and storms. To this end, the sides of cages and the access doors

on the tops of cages were covered with 5-cm diagonal mesh
galvanized chain-link fencing. A gap slightly larger than 5 cm
remained between two hinged access doors on the top of the
cage, however, potentially allowing access to larger predators

capable of swimming. Cage bottoms were lined with plastic
mesh (6.4 mm diameter Vexar). Each cage contained a 5 3 5
array of plastic trays (58.4 cm 3 58.4 cm 3 7.4 cm deep, with

0.64 cm diameter holes). Each tray was lined with 2-mm

fiberglass window screen and filled with enough oyster shell to
completely cover the bottom of the tray.

Oysters were deployed at all four sites between October 27

and November 1, 2005 by haphazardly placing shells set with
experimental oysters within each of the 25 trays in their
previously-assigned experimental treatment plots. The target

density of oysters for all treatments was 400 oysters m–2 (¼ 136
oysters tray–1). Realized initial densities differed slightly across
sites and between treatments (Virginia sites:C. virginica¼ 358.1

oysters m–2, C. ariakensis ¼ 325.9 oysters m–2, mixed-species
treatments ¼ 342.0 oysters m–2; Maryland sites: all treatments
¼ 353.1 oysters m–2). Mean shell heights of C. virginica and C.

ariakensis at deployment were 12.80 mm (n ¼ 1362, SD ¼ 5.68)
and 13.85 mm (n ¼ 1272, SD ¼ 5.45), respectively.

Figure 1. Study site locations in Chesapeake Bay and on the Atlantic

coast of Virginia.

TABLE 1.

Field site characteristics and predicted disease pressures and relative predator abundances.

Site Tidal Regime Depth (m)

Salinity (psu)

(Avg.; Range)

Predicted Disease

Pressure
a

Predicted Relative

Predator Abundance
b

Machipongo Intertidal 0–2 High (25.8; 3–34) High Dermo Highest

High MSX

York Subtidal 1–2 High (16.5; 8–22) High Dermo High

High MSX

Patuxent Subtidal 3–4 Mid (11.6; 8–16) Low Dermo Moderate

No MSX

Severn Subtidal 3–4 Low (9.6; 3–14) No Dermo Low

No MSX

aSupporting citation for a priori prediction of disease patterns across sites: Calvo et al. (1999).
bSupporting citation for a priori prediction of predation patterns across sites: White & Wilson (1996).
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Sampling

Sampling occurred one month post-deployment and again in

spring, summer and fall of each year (Table 2). Trays within each
cage were selected for sampling using a risk-averse sampling
design that maximized the distance between unsampled trays re-
maining in the cage, thereby reducing the likelihood of successful

fertilization across trays between any rare diploids that might
have been present. During each sampling period, three trays were
removed from each cage at each site and replaced with trays filled

with clean shell. Prior to its removal from the cage, each tray was
capped to prevent the loss of oysters or associated macrofaunal
organisms.All 24 trays (3 trays cage–13 4 treatments 3 2 blocks)

from a site were sampled on a single day and transported to the
laboratory for processing.

Once returned to the laboratory, each tray was photo-

graphed intact. Valves originally set with experimental oysters
were then removed and photographed individually. Care was
taken to distinguish between experimental oysters and natu-
rally-recruiting oysters. Naturally-recruiting oysters were easily

identified by size because the first episode of natural recruitment
occurred in summer 2006, eight months after deployment of
experimental oysters. Once photographed, experimental oysters

were identified to species, counted, and shell heights measured
to the nearest millimeter using a vernier caliper. After all oysters
were removed, the remaining material in each tray was washed

over a 1-mmmesh sieve and all retainedmaterial fixed with 10%
neutral buffered formalin for later analyses of macrofaunal
abundance and diversity, to be reported elsewhere (Harwell

et al. in prep.). Tissue ash-free dry weights were determined for
five oysters (of each species in the case of the mixed-species
treatment) from each replicate tray by drying all soft tissues at
40�C to a constant weight (1–7 days depending on oyster size)

and combustion at 500�C for 5 h. Length-weight regressions
were used to estimate total biomass within each treatment.

Disease Diagnostics

Prior to deployment, 25 oysters of each species from each
holding facility (UMCES HPL and VIMS ESL) were tested for

disease. Perkinsus marinus (the causative agent of Dermo
disease) infections were assayed using Ray’s fluid thioglycollate

medium (RFTM, Ray 1952). Infections by Haplosporidium
nelsoni (the causative agent of MSX disease), Bonamia spp.
and other metazoan parasites were assessed by standard
histological techniques (Burreson et al. 1988). The presence of

H. nelsoni detected by histology was verified by in situ DNA
hybridization (ISH) techniques. Disease assays were subse-
quently conducted in the summer (July) and fall (September

toOctober) of both 2006 and 2007. In summer samplings, where
sufficient survival permitted, five oysters were selected from
each tray sampled (up to 30 oysters species–1 treatment–1); in fall

samplings, 10 oysters of each species were selected from each
tray (up to 60 oysters species–1 treatment–1) to permit a more
thorough investigation of P. marinus transmission dynamics.

All disease and histology analyses were conducted by the

VIMS Shellfish Pathology Laboratory. Following methods
from Ray (1954), Mackin (1962), and Burreson et al. (1988),
infection intensities were scored as:

Weighted prevalence ¼ ððn1� 5Þ+ ðn2�3Þ+ ðn3�1Þ+ ðn4� 0:5ÞÞ=N
where ni ¼ number of oysters rated as (i), i¼ infection intensity
(1¼ high, 2¼moderate, 3¼ light, and 4¼ rare), and N¼ total

number of oysters of each species tested from each site during
each sampling period.

Ploidy Testing

Evidence exists that a small percentage of triploid oysters are
capable of reverting to a mosaic state (i.e., combination of

original triploid cells and subsequently reverted diploid cells),
and that this process may be progressive over time (Zhou 2002).
We therefore conducted ploidy testing of C. ariakensis from

each site in each year using methods described in Guo et al.
(1996). Briefly, gill tissue samples were collected from each
oyster (target n ¼ 100 C. ariakensis per site), DNA was stained
with 10 mg mL–1 DAPI-10% DMSO, and DNA contents were

analyzed using a PARTEC Cell Cycle Analyzer with UV light
excitation. Output histograms of relative DNA content were

TABLE 2.

Deployment phase and sampling event dates for each of the four field sites.

Task Machipongo York Patuxent Severn

Deployment dates

Steel cages 26 Sept 2005 29 Sept 2005 30 Sept 2005 12 Oct 2005

Plastic trays 6 Oct 2005 10 Oct 2005 30 Sept 2005 12 Oct 2005

Spat-on-shell 31 Oct 2005 1 Nov 2005 28 Oct 2005 27 Oct 2005

Sampling dates

Winter 2005 28 Nov 2005 29 Nov 2005 13 Dec 2005 7 Dec 2005

Spring 2006 5 Apr 2006 10 Apr 2006 24 Apr 2006 17 Apr 2006

Summer 2006 5 July 2006 24 July 2006 10 July 2006 17 July 2006

Fall 2006 17 Oct 2006 4 Oct 2006 10 Oct 2006 24 Oct 2006

Spring 2007 18 Apr 2007 n/a 10 Apr 2007 2 & 26 Apr. 2007a

Summer 2007 30 July 2007* n/a 17 July 2007 24 July 2007*

Fall 2007 10 Sept 2007* n/a 19 Sept 2007 7 Sept 2007*

aIncorrect sampling of one tray in one of the C. ariakensis only cages on April 2nd 2007 required a return visit to the Severn to sample the correct

tray.

* Indicates a reduced number of cages sampled because of reasons outlined in Reductions in experimental design.
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used to confirm oyster species identifications and to categorize
individual oysters as diploids, triploids or mosaics.

Statistical Analyses

Percent survival was calculated on a per tray basis using

counts of live oysters present at each sampling date. Survival data
from July 2006 (the last date for which all treatments at all sites
were present)met the assumptions of normality (Shapiro-Wilk,P¼
0.058) and homoscedasticity (Fcalc < Fmax) and were analyzed
using a four-way, fixed-factor ANOVA model with site, block
(nested within site), species (nested within block) and single/

mixed (nested within species) as factors. The effect of single/
mixed treatment was not significant and was therefore removed
from the model. We observed a significant site x species

interaction (F ¼ 7.64, P ¼ 0.0002) and a significant block effect
(F ¼ 4.07, P ¼ 0.0097), so we next ran series of two-way

ANOVAs, first by site with species and block as main effects,
and second by species with site and block as main effects. In
cases where block was nonsignificant, we ran reduced one-way
ANOVA models with either species or site as the single factor.

Oyster shell height data from July 2006 were initially
analyzed using a partially nested, five-way ANOVA with site,
block (nested within site), species (nested within block), single/

mixed (nested within species), and tray (nested within each
species x single/mixed treatment combination) as factors and
individual oysters within trays as replicates. Tray was found to

be nonsignificant and was removed from the model. Significant
interactions were found both for site x species (F ¼ 137.88, P <
0.0001) and site x single/mixed (F¼ 6.50,P¼ 0.0002), requiring

Figure 2. Temperature (left panels) and salinity (right panels) data at 15-min intervals at each of the 4 sites, presented as mean daily values for the

Machipongo (A, B), York (C, D), Patuxent (E, F) and Severn (G, H) Rivers from 12/1/05 onwards.
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separate testing for the effects of site, species and single/mixed
as main effects within appropriate subsets of the data. Each of

these subsets was tested for the assumptions of normality and
homoscedasticity. In some cases the assumption of normality
was not met (Shapiro-Wilk, P < 0.05) and we performed a Box-
Cox procedure to determine the transformation most closely

resembling a normal distribution (Sokal & Rohlf 1981). Having
observed a significant block effect in the reduced four-way
ANOVA model (F ¼ 11.16, P < 0.0001), we conducted a series

of two-way, fixed-factor ANOVAs for each main effect (site,
species or single/mixed) with cage as a blocking factor. In two-
way ANOVAmodels for particular site x species x single/mixed

treatment combinations, where block effects were nonsignifi-
cant, block was removed from the model and a one-way
ANOVA model was conducted. Multiple comparisons for
significant effects of site were conducted using Scheffé�s test.

Shell height and biomass data for individual oysters were
transformed using log10 and log10 + 1, respectively, to generate
linear regression equations describing oyster growth form by

site, species and treatment (i.e., single/mixed). The slopes of
these regression equations were compared by generating 95%
confidence intervals (C.I.s) and significant differences inferred

between regressions when the 95% C.I. for one slope did not
overlap the other slope estimate.

RESULTS

Reductions in Experimental Design

During the course of these experiments, three modifications

were made to the original experimental design. First, the

experiment at the York River was terminated early (Oct 2006)
as a result of Tropical Storm Ernesto and a subsequent

nor’easter storm in the lower Chesapeake Bay. Although no
oysters were released from the cages, there was considerable
redistribution of oysters between trays within cages. This
limited the value of future data collected from the site

and raised enough concerns about biosecurity to warrant
early termination of this site. Second, at the Machipongo
River site, one block of cages was located at approximately

MLLW and the second block at approximately 0.25 m above
MLLW. In both Oct 2006 and April 2007 samples, no
C. ariakensis survived in either the single- or mixed-species

cages from the block situated above MLLW. We terminated
collection of C. ariakensis data from this block, but continued
to gather C. virginica data from both single/mixed treatments
in both blocks through the end of the experiment (Sept

2007). Third, in June to July 2007 illegal fishing activity
damaged one replicate cage of both single-species treatments
(C. virginica only and C. ariakensis only) at the Severn

River, partly revealed by observations made during July 2007
sampling dives. Extensive search and recovery efforts were
made to remove all oysters within and around the

damaged cages. While we continued to sample the remaining
cages at the Severn site through Sept 2007, data on
survival, growth and oyster biomass m–2 are presented only

up until Apr 2007. Disease data from the Severn site for July
2007 and Sept 2007 were gathered from animals in the remain-
ing single- and mixed-species treatment cages. Table 2 provides
a complete list of the deployment and sampling dates for each

site.

Figure 3. Survival of C. virginica (open triangles, solid lines) and C. ariakensis (closed circles, broken lines) at each study site: (A) Machipongo, (B)

York, (C) Patuxent and (D) Severn. Data are expressed as mean numbers of live oysters m–2 (%1 S.E.) for the single-species treatment only. At the

Machipongo, C. ariakensis data from July 2007 onwards are from one block only (arrow indicates termination of C. ariakensis data collection from the

second block).
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Temperature and Salinity

The intertidal Machipongo River site exhibited greater
variability in temperature and salinity than the three subtidal
sites (Fig. 2) because it was alternately exposed to seawater
and air temperatures within each tidal cycle. Both the

lowest (–8.8�C on Feb 6, 2007) and highest (38.0�C on June
21, 2006) individual 15-min interval temperature records
observed during this experiment occurred at theMachipongo

River site during low tide (not shown by plotting daily
averages in Fig. 2A, chosen for figure clarity). Shortly after
deployment (Dec 2005 to Feb 2006) and again in the

second winter (Dec 2006 to Feb 2007), oysters at this site
experienced subzero temperatures. At the three subtidal
sites, recorded seasonal temperature profiles were similar
across sites (Figs. 2 C, E, & G), showed less short-term

temporal variability than the Machipongo River site, and
never fell below zero. Salinity was much less variable at the
subtidal sites than at the Machipongo River site (Fig.

2), reflecting the close proximity of the intertidal site to the
shoreline and its direct exposure to freshwater run-off
during rain events. In Aug 2006 several rain events at the

Machipongo River site caused the salinity to fall from 24.5
psu on 8 Aug 2006–5.3 psu on 26 Aug. 2006. In general,
however, draught conditions prevailed for much of the two-

year study period, and salinities at the Patuxent and Severn
River sites were elevated compared with long-term averages
(Chesapeake Bay Program monitoring data, see http://
www.chesapeakebay.net/monitoring.aspx?menuitem¼
19916).

Survival and Growth

Survival and growth of C. virginica and C. ariakensis varied
across sites (Figs. 3–6, Tables 3–7). During the first month after
deploymentmortality rates were high at all sites, with a consistent
trend of lower survival of C. ariakensis (Fig. 3). The lowest

survival was observed at the Machipongo River site, where,
during the first month, C. virginica and C. ariakensis suffered
37% and 43%mortality, respectively. Initial growth rates during

this first month were similar for both species at the Machipongo,
Patuxent, and Severn Rivers; however, at the York River, C.
ariakensis exhibited higher growth rates thanC. virginica (Fig. 4).

Over the first winter little mortality was observed at the York
and Severn River sites, while both oyster species at the Machi-
pongo and Patuxent River sites experienced 20% to 24%
mortality (Fig. 3). Growth rates of C. ariakensis during this

period were greater than those of C. virginica at the York
and Patuxent River sites and comparable at the other two sites
(Fig. 4).

Between April and July 2006 high mortality was observed
for both species at the high salinity sites. At the Machipongo
River site,C. ariakensis experienced almost complete mortality,

while C. virginica had over 50% mortality during this period
(Fig. 3A), whereas at the York River site (Fig. 3B), mortalities
were 26.52% and 48.47% for C. ariakensis and C. virginica,

respectively, over these 3 mo. Growth rates during this period
were similar between species with the exception of the Machi-
pongo River site, where C. ariakensis grew more rapidly than
the native species (Fig. 4A). In general, survival and growth

patterns across sites and species were established by the July

Figure 4. Growth ofC. virginica (open triangles, solid lines) andC. ariakensis (closed circles, broken lines) at each study site: (A)Machipongo, (B) York,

(C) Patuxent and (D) Severn. Data are expressed as mean shell height (mm) (%1 S.E.) for the single- and mixed-species treatments combined. At the

Machipongo,C. ariakensis data from July 2007 onwards are from one block only (arrow indicates termination of C. ariakensis data collection from the

second block).
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2006 sampling date, the last sampling period for which all

treatment replicates were intact across all sites.
Significant effects of species on survival were observed at the

Machipongo and York River (Table 3). At the Machipongo

River, C. virginica had higher survival than C. ariakensis,
presumably because of its greater tolerance of aerial exposure.
At the York River, C. ariakensis had higher survival rates than

C. virginica, potentially caused by a partial predation refuge
conferred by size. Survival did not differ between the two
species at the Patuxent and Severn River sites (Table 3).

Survival of both C. virginica and C. ariakensis varied

significantly across sites in July 2006 (Table 4, Figure 3). For
C. virginica, mean survival was highest at the Severn River,
intermediate at the Patuxent and York Rivers, and lowest at the

Machipongo River. C. ariakensis survival did not differ signif-
icantly between the Severn, York, and Patuxent River sites but
was significantly lower at the Machipongo River (Table 4).

In July 2006, significant differences in shell height were
observed between species, sites, and single/mixed treatments
(Tables 5–7, Figs. 4 and 5). At all sites and for single- andmixed-

species treatments, C. ariakensis had greater shell heights than
C. virginica (P < 0.0001 in all cases), though these differences
were small (<10 mm) at the Severn River (Table 5). For both
species, and in both single/mixed treatments, there was a

significant effect of site on shell height (Table 6, P < 0.0001 in
all cases). For both oyster species, in the single-species treat-
ments, all sites differed significantly from one another, with the

York > Patuxent > Severn > Machipongo (P # 0.05, Scheffé�s
multiple comparisons tests). Site differences in the mixed-
species treatments were more complicated and varied between

oyster species; however, the order of ascending mean shell
heights mirrored that of the single-species treatments described
above. The effect of single/mixed was more variable than site as
a main effect, with differences observed in C. ariakensis shell

heights in only two cases (Table 7). At both the Patuxent and
Severn River sites, C. ariakensis was larger in the single-species
treatment than in the mixed-species treatment.

We observed significant block effects on shell height in
several instances (Machipongo: species as main effect in
mixed-species treatment, and single/mixed as main effect in C.

ariakensis; York: species as main effect in mixed-species treat-
ment; Patuxent: species as main effect in single-species treat-
ment, and single/mixed as main effect in C. ariakensis; Severn:

species as main effect in single-species treatment, and single/
mixed as main effect in C. virginica; site as main effect for both
species and both single/mixed treatments), indicating some
effect of the position of the cage within our block design on

oyster growth. At the subtidal sites, observations made during
sampling events suggest that these effects may have been the
result of differential bedload transport of sediments into cages.

Shell height to biomass relationships were computed for
each combination of site, species, and treatment by regressing
log10 (shell height) versus log10 + 1 (ash-free dry weight) (Table

8). The resulting regression equations differ between treatments
(single/mixed) in only two site x species combinations: (1) at the
Patuxent River site for C. virginica, where the slope for single-
species treatment (slope ¼ 3.210, SE ¼ 0.054) was significantly

greater than that for themixed-species treatment (slope¼ 3.068,
SE ¼ 0.057); and (2) at the Machipongo River site for C.
ariakensis, where again the slope for the single-species treatment

(slope ¼ 3.268, SE ¼ 0.082) was significantly greater than that
for the mixed-species treatment (slope ¼ 3.008, SE ¼ 0.066).
There was also a consistent pattern of steeper slopes (i.e., more

biomass per unit shell height) for C. ariakensis versus C.
virginica across all sites (Table 8).

Shell height to biomass regressions were used to estimate

oyster biomass within each site, species and single/mixed
treatment combination throughout the study. Reported as

Figure 5. Size distribution of live oysters by site in July 2006. The total

number of live C. virginica (white bars) and C. ariakensis (black bars)

within each shell height bin (5-mm) are shown for each site: (A)

Machipongo, (B) York, (C) Patuxent and (D) Severn.

TABLE 3.

Effect of Species by Site on oyster percent survival from
one-way ANOVA.

Site

Mean % Survival Effect of Species by Site

C. virginica C. ariakensis F-value p-value

Machipongo 21.29 6.38 21.35 <0.0001

York 42.04 62.32 7.99 0.0098

Patuxent 55.99 55.44 0.01 0.9190

Severn 77.94 68.18 2.89 0.1034

Note: Significant block effects occurred for theMachipongo (F¼ 16.00,

P ¼ 0.0006) and Patuxent (F ¼ 7.06, P ¼ 0.0147) only, requiring two-

way ANOVA models. For the York and Severn block effects were

nonsignificant and are not shown.
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grams ash-free dry weight m–2, these data show the combined
effects of survival and growth on oyster biomass at each site for

each of the single-species treatments (Fig. 6). Final biomass per
unit area was greater forC. ariakensis than forC. virginica at the
three subtidal sites and comparable between the two species in

the lower intertidal block at the Machipongo (Fig. 6).

Oyster Disease Status

Few P. marinus infections were observed in the July 2006

samples, but by Oct 2006 infections were observed in both C.
virginica and C. ariakensis at all sites (Table 9). The prevalence
and intensity of P. marinus infections in C. virginica varied with
salinity throughout the study, as expected, with values generally

increasing with salinity. C. ariakensis infections also followed
this pattern, with the exception that the Patuxent River site had
the lowest infection levels in 2007. In C. ariakensis most

infections were light or rare with a few cases exhibiting
moderate prevalence (York River in July 2006 and Patuxent
River in Oct 2006). No high intensity P. marinus infections were

ever observed in C. ariakensis. We had not expected to observe
P. marinus infections at the Severn River; however, infections
were observed at low prevalence (20%) and light and rare
intensities in both species in Sept 2007. These infection levels are

not expected to have caused mortality.
The few cases of H. nelsoni infections detected in C. virginica

and C. ariakensis occurred at the two highest salinity sites (Table

10). H. nelsoni infections of C. virginica were found in July and
Oct 2006 samples from the York River and in July and Sept 2007

samples from the Machipongo River. H. nelsoni infections of
C. ariakensis, initially recorded from histological examinations

and subsequently confirmed by in situ hybridization (ISH) techni-
ques, were found in two oysters from the York River in Oct 2006.

No infections by Bonamia spp. were observed in any of the

histological tissue samples examined for either oyster species.

Post-Deployment Ploidy Testing of C. ariakensis

C. ariakensis were collected for ploidy testing beginning on

10 May 2006 with the collection of 101 samples from the York
River site only. All 101 animals tested were triploid with no
mosaic or diploid tissue. After the July 2006 sampling, we tested

(where available) at least 100 animals from each site for ploidy
(n ¼ 49, 105, 113, and 100 for the Machipongo, York, Patuxent,
and Severn, respectively). Of the total 367 oysters tested, all were
triploid. InApril 2007, we again conducted ploidy testing (n¼ 61,

113, and 117 for the Machipongo, Patuxent and Severn, respec-
tively; no samples were collected from the terminated York site).
Of the 291 animals tested, 290 were identified as triploid C.

ariakensis. A single animal from the SevernRiver was triploid but
yielded a DNA content indicative of C. virginica.

After damage to one of the C. ariakensis cages at the Severn

River site in June to July 2007, we collected samples for
additional ploidy analyses from 99 individuals on July 26,
2007. All oysters were triploid C. ariakensis. Thus, of the 858
C. ariakensis analyzed for ploidy throughout the course of this

experiment, no diploid or genetically mosaic C. ariakensis were
observed. All remaining C. ariakensis were removed from the
field at the termination of the experiment in Sept 2007 and we

Figure 6. Mean oyster biomass per unit area (g m–2) for the single species cages of C. virginica (open triangle, solid lines) and C. ariakensis (closed

circles, broken lines) at each study site: (A) Machipongo, (B) York, (C) Patuxent and (D) Severn. Error bars are %1 SE. At the Machipongo, C.

ariakensis data from July 2007 onwards are from one block only (arrow indicates termination of C. ariakensis data collection from the second block).

Note that the y-axis scale for the Machipongo River is an order of magnitude lower.
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have no reason to suspect that this research resulted in an
unintentional introduction.

DISCUSSION

Survival and growth of C. virginica and C. ariakensis varied
significantly across bottom environments of Chesapeake Bay and

adjacent coastal waters. Survival of the two species was compa-
rable at the low and mid salinity sites. C. ariakensis had higher
survival than the native oyster species at the high salinity subtidal

site, whereas at the intertidal high salinity site the native oyster,
C. virginica, had higher survival than the non-native species. The
growth rate of C. ariakensis exceeded that of C. virginica at all
sites; however, this difference was small at the lowest salinity site.

Combined survival and growth resulted in comparable produc-
tion over the 23mo duration of the study by the two species in the
lower intertidal block only at the Machipongo; the higher

intertidal block had no survivingC. ariakensis. Higher production
was observed for C. ariakensis than C. virginica at all of the
subtidal sites. Growth rates of both species were high in subtidal

environments, with mean shell heights exceeding 75 mm for each
at the two subtidal sites (Patuxent and Severn) by April 2007.

Our data are the first collected on survival and growth rates

of C. ariakensis in bottom habitats within the Chesapeake Bay
region. Direct comparisons between these rates and those
observed from studies in off-bottom cages (Calvo et al. 2001,

Grabowski et al. 2004, Hudson et al. 2005, Paynter et al. 2008)
should be made with caution because other factors (e.g., initial

size and density of oysters) varied between studies. There is
ample evidence from studies withC. virginica that both survival
and growth rates of oysters elevated above the bottom (either
suspended in the water column or on high relief reefs) exceed

those of oysters in low relief bottom habitats (e.g., Lenihan
1999, Lenihan et al. 1996, Lenihan&Peterson 1998, Bartol et al.
1999, Moroney & Walker 1999, Saoud et al. 2000). Thus, we

suggest that the rates reported here are more appropriate for
predicting survival and growth rates of C. ariakensis in bottom
habitats than those previously reported.

Our experiments, however, have several significant limita-
tions with regard to estimating natural mortality rates. First, the
size of the oysters at the time of deployment (ca. 13-mm shell
height) likely limited the effects of small predators such xanthid

crabs (e.g., Panopeus herbstii, Eurypanopeus depressus, and
Rhithropanopeus harrisii) and the polyclad flatworm, Stylochus
ellipticus (Newell et al. 2000). Juvenile C. ariakensis are more

susceptible to predation by xanthid crabs than C. virginica
(Newell et al. 2007), thus rates of early post-settlement mortality
would likely have been higher for C. ariakensis had we used

smaller oysters. Second, the cages themselves likely reduced
predation rates by limiting the access of predators such as large
blue crabs, Callinectes sapidus (although some were found

inside the cages) and cownose rays, Rhinoptera bonasus.
Because C. ariakensis shells are structurally weaker and thus
more susceptible to crushing by predators than C. virginica
shells (Bishop & Peterson 2006, Newell et al. 2007), relative

mortality rates for adult C. ariakensis would also likely be
higher under natural conditions. Lastly, none of our experi-
mental sites were located in areas expected to experience

episodes of low dissolved oxygen (DO). Evidence exists that
C. ariakensis has a lower tolerance of low DO than C. virginica
(Harlan & Paynter unpublished data).

C. ariakensis exhibited little tolerance for intertidal expo-
sure. At the intertidal Machipongo site, mortality was 43% by
the end of the first month. By the end of the first year, all of the
C. ariakensis in the higher block of cages (approximately 0.25 m

above MLLW) were dead and <5% persisted in the lower block
(approximatelyMLLW). This pattern is consistent with previous

TABLE 4.

Effect of Site by Species on oyster percent survival from one-way
ANOVA. Values with equivalent letters were not different

(P > 0.05) by Scheffé�s multiple comparisons tests*.

Species

Mean % Survival

Effect of Site

by Species

Machipongo York Patuxent Severn F-value p-value

C. virginica 21.29a 42.04b 55.99b 77.94c 31.17 <0.0001

C. ariakensis 6.38a 62.32b 55.44b 68.18b 48.55 <0.0001

*For significant differences between sites (P < 0.05), compare letter

values within species only.

TABLE 5.

Sample size (n), mean and standard deviation (SD) of oyster shell height in July 2006 for species by site and single- versus
mixed-species treatments. F- and P values are for the effect of single versus mixed treatment from one-way and two-way

ANOVAs (when block effects [not shown] are included).

Site Single/Mixed

Shell Height (mm)

C. virginica C. ariakensis Effects of Species

n Mean SD n Mean SD F-value p-value

Machipongo Single 184 25.05 7.10 41 36.89 8.49 86.56 <0.0001

Mixed 64 23.98 6.11 22 39.07 11.06 64.99 <0.0001

York Single 270 48.17 10.26 399 75.06 15.04 659.61 <0.0001

Mixed 173 49.59 11.85 216 76.55 14.08 412.23 <0.0001

Patuxent Single 389 44.11 13.31 391 64.04 16.14 366.05 <0.0001

Mixed 210 42.82 14.23 205 58.93 16.00 114.48 <0.0001

Severn Single 512 40.82 8.35 479 49.02 10.67 183.45 <0.0001

Mixed 307 40.58 8.22 253 47.02 10.13 68.89 <0.0001
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experiments in quarantine (Kingsley-Smith & Luckenbach
2008) and with observations of C. ariakensis in its native range
(Luckenbach et al. 2005, Wang et al. 2008, Yoon et al. 2008),
where it appears to be limited to subtidal and low intertidal

locations. The experimental conditions at this site may have
resulted in harsher physical conditions than on a natural
intertidal oyster reef, where reef interstices provide some

buffering from temperature extremes and desiccation. Never-
theless, the observed pattern is consistent with what we know
about each oyster species.

Given differing tolerances to intertidal exposure, spatial
segregation could develop between the species in high salinity
environments, with C. virginica occupying the high and mid

intertidal zones and C. ariakensis dominating the low intertidal
and subtidal zones. In high salinity regions of the Gulf of
Mexico and lower Middle and South Atlantic coasts of the
United States, Crassostrea virginica occurs predominantly in

the intertidal zone (Coen et al. 1999, Coen & Grizzle 2007),
where the lower limit of its distribution is determined by
predation and competition (Galtsoff & Luce 1930, Chestnut

& Fahy 1952, Dame 1979, Ortega 1981, O’Beirn et al. 1996) and
the upper limit by physiological tolerance of exposure (Nichy &
Menzel 1967, Michener & Kenny 1991, Roegner &Mann 1995,

Shumway 1996). Provided C. ariakensis can survive ambient
predation and competition, it has the potential to establish
populations in subtidal high salinity areas. A similar niche

separation driven by aerial exposure tolerance has been
described for interactions between native (Saccostrea glomer-
ata) and non-native (C. gigas) oysters on the east coast of
Australia (Krassoi et al. 2008). At mid and low intertidal

elevations, S. glomerata is rapidly overgrown by C. gigas. In
the high intertidal, C. gigas suffers high mortality and S.
glomerata appears to be unaffected by the presence of the

non-native species. Other examples of spatial separation
between native and introduced oyster species have been docu-
mented by Walne & Helm (1979) and Andrews (1980).

Our experimental design allowed us to investigate some
aspects of competition between the two species. The mixed-
species treatment was established by placing equal numbers of

shells set with C. virginica and shells set with C. ariakensis into
each tray at an overall oyster density equal to that of the single-
species treatments. Although our design did not permit us to
evaluate early interspecific competition for space on individual

shells, both species grew quickly (especially at subtidal sites)
and soon occupied much of the space within each tray. Direct
contact between clumps of C. virginica and C. ariakensis be-

came common. Under these conditions, the two species were ex-
pected to compete primarily for food. While we do not expect
food to be broadly limiting in the eutrophic Chesapeake Bay,

localized food depletion can occur in the immediate vicinity of
the oysters (Harsh & Luckenbach 1999). Our experiments
found evidence for negative impacts of interspecific competition

TABLE 7.

Sample size (n), mean and standard deviation (SD) of oyster shell height in July 2006 for single and mixed species
treatments by site and species. F- and P values are for the effect of single versus mixed treatment from one-way

and two-way ANOVAs (when block effects [not shown] are included).

Site Species

Shell Height (mm)

Single Species Mixed Species Effects of Single/Mixed

n Mean SD n Mean SD F-value p-value

Machipongo C. virginica 184 25.05 7.10 64 23.98 6.11 0.86 0.3541

C. ariakensis 41 36.89 8.49 22 39.07 11.06 0.47 0.4960

York C. virginica 270 48.17 10.26 173 49.59 11.85 1.79 0.1822

C. ariakensis 399 75.06 15.04 216 76.55 14.08 1.30 0.2548

Patuxent C. virginica 389 44.11 13.31 210 42.82 14.23 1.08 0.2990

C. ariakensis 391 64.04 16.14 205 58.93 16.00 14.78 0.0001

Severn C. virginica 512 40.82 8.35 307 40.58 8.22 0.15 0.6941

C. ariakensis 479 49.02 10.67 253 47.02 10.13 6.20 0.0130

TABLE 6.

Mean oyster shell height in July 2006 for each site by species and single- versus mixed-species treatments. n and SD associated
with each mean can be found in Tables 4 A and C. F- and P values are for the effect of single versus mixed treatment from

one-way and two-way ANOVAs (when block effects [not shown] are included).

Species Single/Mixed

Shell Height (mm) Effects of Site

Machipongo York Patuxent Severn F-value p-value

C. virginica Single species 25.05d 48.17a 44.11b 40.82c 216.63 <0.0001

Mixed species 23.98c 49.59a 42.82b 40.58b 90.84 <0.0001

C. ariakensis Single species 36.89d 75.06a 64.04b 49.02c 326.13 <0.0001

Mixed species 39.07c 76.55a 58.93b 47.02c 208.11 <0.0001

*Within single rows, means with different letters are significantly different from one another (P < 0.05).
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on C. ariakensis at the low and mid salinity subtidal sites
(Severn and Patuxent, respectively; Table 7). At both sites, the

mean shell height of C. ariakensis was greater in the single-
species treatment than in the mixed-species treatment. We
found no evidence for reduced growth rates of C. virginica as

a result of interspecific competition. The patterns we observed
imply that interspecific competition with C. virginica reduced
the growth rate of C. ariakensis more than competition with

conspecifics. The mechanism by which this occurs, however,
remains unclear.

Our analyses frequently revealed significant block effects on

oyster growth. These effects are explicable at the Machipongo
River, where the blocks differed in tidal elevation, and possibly

at the York River, where one block was located closer to the
shoreline. Block effects are less readily explained at the sites in

Maryland, where the arrangement of cages into blocks did not
follow an obvious environmental gradient. It is possible that
these effects are related to differences in bedload sediment

transport and/or microhabitat conditions that influenced oyster
physiology and growth. Importantly, these block effects did not
alter the patterns we observed across sites and between species.

Disease did not play a major role in the survival patterns
observed in this study. P. marinus infections were observed in
both oyster species at all sites during the course of the study.

Patterns of infection in C. virginica and C. ariakensis were
similar to those observed in previous studies (Paynter et al.

TABLE 8.

Oyster growth form investigated from log10 shell height in mm (x) to log10 + 1 oyster biomass ash-free dry weight in grams (y)
linear regression equations by site, species and treatment (single/mixed). Significant differences between treatments were

determined from nonoverlapping 95% C.I.s of slopes (ns$ slopes not significantly different from one another).

Site Species Single/Mixed Equation R2 value

Slope Comparison

Results

Machipongo C. virginica Single y ¼ 3.062x – 2.636 0.838 ns

Mixed y ¼ 2.892x – 2.427 0.897

C. ariakensis Single y ¼ 3.268x – 2.945 0.941 Single > Mixed

Mixed y ¼ 3.008x – 2.469 0.951

York C. virginica Single y ¼ 3.459x – 3.276 0.883 ns

Mixed y ¼ 3.326x – 3.083 0.852

C. ariakensis Single y ¼ 3.793x – 3.948 0.897 ns

Mixed y ¼ 3.767x – 3.865 0.884

Patuxent C. virginica Single y ¼ 3.210x – 2.831 0.945 Single > Mixed

Mixed y ¼ 3.068x – 2.602 0.934

C. ariakensis Single y ¼ 3.348x – 3.103 0.903 ns

Mixed y ¼ 3.329x – 3.080 0.911

Severn C. virginica Single y ¼ 2.843x – 2.288 0.923 ns

Mixed y ¼ 2.773x – 2.161 0.926

C. ariakensis Single y ¼ 3.272x – 2.992 0.898 ns

Mixed y ¼ 3.326x – 3.073 0.910

TABLE 9.

Prevalence and intensity of Perkinsus marinus (Dermo) infections (n$ number of oysters tested).

Sample date Site

C. virginica C. ariakensis

n

%

infected

Intensity level (%)

WP n

%

infected

Intensity level (%)

WPHigh Moderate Light Rare High Moderate Light Rare

July 2006 Machipongo 76 0.00 0.00 0.00 0.00 0.00 0.00 49 4.08 0.00 0.00 4.08 0.00 0.04

York 60 5.00 0.00 0.00 0.00 5.00 0.03 60 10.00 0.00 1.67 0.00 8.33 0.09

Patuxent 60 0.00 0.00 0.00 0.00 0.00 0.00 55 0.00 0.00 0.00 0.00 0.00 0.00

Severn 60 5.00 0.00 0.00 0.00 5.00 0.03 60 3.33 0.00 0.00 0.00 3.33 0.02

Oct 2006 Machipongo 104 63.46 6.73 17.31 34.62 4.81 1.23 37 43.24 0.00 0.00 35.14 8.11 0.39

York 85 41.18 2.35 10.59 14.12 14.12 0.65 97 14.43 0.00 0.00 7.22 7.22 0.11

Patuxent 120 35.83 0.00 5.00 22.50 8.33 0.42 119 38.66 0.00 2.52 25.21 10.92 0.38

Severn 120 5.83 0.00 0.00 3.33 2.50 0.05 119 19.33 0.00 0.00 9.24 10.08 0.14

July 2007 Machipongo 45 86.67 22.22 37.78 17.78 8.89 2.47 24 50.00 0.00 0.00 45.83 4.17 0.48

Patuxent 60 3.33 0.00 0.00 1.67 1.67 0.03 45 0.00 0.00 0.00 0.00 0.00 0.00

Severn 44 18.18 0.00 0.00 2.27 15.91 0.10 45 6.67 0.00 0.00 0.00 6.67 0.03

Sept 2007 Machipongo 72 90.28 11.11 45.83 27.78 5.56 2.24 13 46.15 0.00 0.00 46.15 0.00 0.46

Patuxent 116 28.45 0.00 9.48 12.07 6.90 0.44 118 16.10 0.00 0.00 7.63 8.47 0.12

Severn 50 20.00 0.00 0.00 16.00 4.00 0.18 50 20.00 0.00 0.00 8.00 12.00 0.14
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2008). Prevalences of C. virginica with moderate to high P.
marinus intensity infections only exceeded 15% at the Machi-

pongo River site, where in July and September 2007 weighted
prevalences reached values (2.0–2.5) associated with disease-
induced mortality events in the field (Audemard et al. 2006,

Paynter et al. 2008). All P. marinus infections in C. virginica at
the Severn River site, and most of P. marinus infections at the
Patuxent River, were scored as light or rare. Although there was

no indication of high mortalities associated with these infec-
tions, it is likely that had the experiment run longer C. virginica
at the Machipongo and York River sites would have experi-

enced some mortality associated with Dermo disease (Aude-
mard et al. 2006). P. marinus infections were observed in C.
ariakensis at all sites, but only during Oct 2006 at the Patuxent
River, when 3 of 119 animals tested exhibited moderate

intensity infections, did the intensity levels exceed light or rare.
Moss et al. (2006) have demonstrated, however, that under
laboratory conditions, P. marinus is capable of causing lethal

intensity infections in C. ariakensis.
H. nelsoni infections were only observed inC. virginica at the

Machipongo and York River sites, where prevalences and

intensities remained generally low. At the final sampling of
the York River in Oct 2006, 12% of C. virginica sampled had
high or moderate H. nelsoni infections. If the experiment had
continued longer at this site, some mortality fromMSX disease

would likely have occurred.
The observation of H. nelsoni infections in C. ariakensis

tissue samples collected from the field is, to the best of our

knowledge, novel. Infection intensity was scored as rare in both
of the oysters in which the parasite was found, and there was no
sign of advanced MSX disease. Despite the lack of previous

reports of H. nelsoni infections in C. ariakensis, it is not
particularly surprising to find infections with low prevalence
and intensity. The York River site, adjacent to the VIMS

campus, has been used for numerous oyster field studies for at
least the past 50 years, and is known to be an area with high
MSX disease pressure (e.g., Calvo et al. 1999). Moreover, the
presence of low level, nonpathogenicH. nelsoni infections in the

closely-related Pacific oyster, C. gigas, has been previously
reported (Burreson et al. 2000). An alternative interpretation

of this novel finding is sample contamination. The histological
identifications of the parasite asH. nelsoni were confirmed by in
situ DNA hybridization; however, no genetic confirmations of

the oyster species were conducted. We have no reason to
suspect, however, that the oysters in question were not C.
ariakensis. Each oyster species was set onto a different valve

(right valves only in the case of C. ariakensis) and we are
proficient at distinguishing morphologically between adults of
the two species. Nevertheless, it would be prudent to await

further findings of H. nelsoni infections in C. ariakensis before
declaring this species susceptible to the MSX parasite.

Histological examinations of tissue samples from 786 C.
virginica and 649C. ariakensis (see Tables 9 and 10 for temporal

and spatial distribution) did not reveal the presence of any
Bonamia spp. in oysters from this study. Burreson et al. (2004)
have reported that Bonamia sp. was partly responsible for high

mortalities of triploid C. ariakensis in high salinity areas of
Bogue Sound, NC and Audemard et al. (2008) have suggested
that some risk exists for the spread of this parasite to Virginia

waters with salinity >20 psu. The lack of Bonamia spp. in
samples from our experiment is consistent with the results of
other oyster disease screening from Virginia to date.

If introduced to Chesapeake Bay or surrounding waters, the

invasive potential of C. ariakensis will depend on several
factors. Some of these have been clarified by this research.
Growth of C. ariakensis in shallow subtidal bottom habitats

comparable to those studied here exceeds that of C. virginica,
although the differences are small in low salinity environments.
Survival of the non-native species is low in the intertidal zone,

and its ability to persist in high salinity environments, where
native oysters are largely restricted to the intertidal, will depend
in part on its ability to overcome high predation rates in the

subtidal. It remains unclear whether the ability of C. ariakensis
to achieve a size refuge from predation via a high growth rate is
sufficient to offset its increased susceptibility because of its low
shell strength. This did seem to be the case at the York River

TABLE 10.

Prevalence and intensity of Haplosporidium nelsoni (MSX) infections (n$ number of oysters tested).

Sample date Site

C. virginica C. ariakensis

n

%

infected

Intensity level (%)

WP n

%

infected

Intensity level (%)

WPHigh Moderate Light Rare High Moderate Light Rare

July 2006 Machipongo 56 0.00 0.00 0.00 0.00 0.00 0.00 39 0.00 0.00 0.00 0.00 0.00 0.00

York 59 27.12 1.69 1.69 15.25 8.47 0.33 60 0.00 0.00 0.00 0.00 0.00 0.00

Patuxent 60 0.00 0.00 0.00 0.00 0.00 0.00 55 0.00 0.00 0.00 0.00 0.00 0.00

Severn 60 0.00 0.00 0.00 0.00 0.00 0.00 58 0.00 0.00 0.00 0.00 0.00 0.00

Oct 2006 Machipongo 54 0.00 0.00 0.00 0.00 0.00 0.00 27 0.00 0.00 0.00 0.00 0.00 0.00

York 51 13.73 5.88 5.88 0.00 1.96 0.48 53 3.77 0.00 0.00 0.00 3.77 0.02

Patuxent 60 0.00 0.00 0.00 0.00 0.00 0.00 60 0.00 0.00 0.00 0.00 0.00 0.00

Severn 60 0.00 0.00 0.00 0.00 0.00 0.00 60 0.00 0.00 0.00 0.00 0.00 0.00

July 2007 Machipongo 45 4.44 0.00 0.00 2.22 2.22 0.03 24 0.00 0.00 0.00 0.00 0.00 0.00

Patuxent 60 0.00 0.00 0.00 0.00 0.00 0.00 45 0.00 0.00 0.00 0.00 0.00 0.00

Severn 44 0.00 0.00 0.00 0.00 0.00 0.00 45 0.00 0.00 0.00 0.00 0.00 0.00

Sept 2007 Machipongo 67 1.49 0.00 1.49 0.00 0.00 0.04 13 0.00 0.00 0.00 0.00 0.00 0.00

Patuxent 60 0.00 0.00 0.00 0.00 0.00 0.00 60 0.00 0.00 0.00 0.00 0.00 0.00

Severn 50 0.00 0.00 0.00 0.00 0.00 0.00 50 0.00 0.00 0.00 0.00 0.00 0.00
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site, although early postsettlement mortality and overall predator
abundances were influenced by our experimental design. It is clear

from this study that, if introduced to the region, the ability of C.
ariakensis to become established and the outcome of its inter-
actions with native oysters will vary significantly with location.
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