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Analysis of cis-Acting Sequences Involved in Plus-Strand Synthesis of a Turnip Crinkle Virus-
Associated Satellite RNA Identifies a New Carmovirus Replication Element
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Satellite RNA C (satC) is a 356-base subviral RNA associated with turnip crinkle virus (TCV). A 39-proximal element
(39-UCCCAAAGUAU) located 11 bases from the 39 terminus of satC minus strands can function as an independent promoter
in an in vitro RNA-dependent RNA polymerase (RdRp) transcription system. Furthermore, in the absence of a 59-proximal
element, the 39-proximal element is required for complementary strand synthesis in vitro. Site-directed mutagenesis was
conducted to investigate the functional significance of this element and the 39 minus-strand terminal sequence “39-OH-
CCCUAU,” which contains the minus-strand 39-end sequence “39-OH-CC1–2(A/U)(A/U)(A/U)” found in all carmovirus RNAs.
Single mutations in the 39-terminal sequence, which we have named the carmovirus consensus sequence (CCS), suppressed
satC plus-strand synthesis to undetectable levels in protoplasts while still permitting some minus-strand synthesis. However,
single and multiple mutations introduced into the 39-proximal element had little or no effect on satC accumulation in
protoplasts. In vivo genetic selection (SELEX) of the minus-strand 39-terminal 21 bases revealed that all satC species
accumulating in plants contained the 39 CCS. In addition, the 39-proximal element preferentially contained a sequence similar

to the CCS and/or polypurines, suggesting that this element may also contribute to accumulation of satC in vivo. © 2000

Academic Press
INTRODUCTION

Replication is a fundamental activity of an RNA virus.
Replication of positive-sense RNA viruses involves the
synthesis of complementary minus-strand intermediates
from the parental RNA template followed by synthesis of
nascent plus strands. Initiation of replication requires the
specific recognition of cis-acting RNA elements by the
viral RNA-dependent RNA polymerase (RdRp) and/or as-
sociated host factors, and many sequences and/or struc-
tures required for minus-strand synthesis have been
characterized for a number of RNA viruses (Buck, 1996).

Most viral RdRp extracts cannot use minus-strand
RNA as template; thus promoters for plus-strand synthe-
sis have been less extensively characterized. Reverse
genetic approaches using cell cultures to monitor viral
RNA accumulation indicate that the 59-terminal region of
plus-strand RNA or the complementary 39-end region of
minus strands contains cis-acting signals for plus-strand
synthesis (Duggal et al., 1994; Buck, 1996). For example,
a cloverleaf structure at the 59 ends of poliovirus and
brome mosaic virus (BMV) plus-strand RNAs, but not the
similar structure on minus strands, is necessary for plus-
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strand synthesis, possibly through interactions with host
factors that keep the 39 end of nascent minus strands
single-stranded and accessible to the viral RdRp (Pogue
and Hall, 1992; Andino et al., 1990, 1993; Duggal and Hall,
1995). On the other hand, some 59 elements delineated
on plus strands in vivo likely function in their minus-
strand orientation for plus-strand synthesis. For example,
minus-strand sequences in BMV RNAs that are essential
for plus-strand synthesis are similar to the internal con-
trol region of tRNA gene promoters (Pogue et al., 1990,
1992). The 39-terminal regions of Sindbis virus and potato
virus X minus strands are also thought to be involved in
plus-strand synthesis (Niesters and Strauss, 1990; Par-
digon and Strauss, 1992, 1996; Kim and Hemenway, 1996;
Miller et al., 1998).

Turnip crinkle virus (TCV), a member of the genus
Carmovirus, is a single-stranded positive-sense RNA vi-
rus with a genome of 4054 bases (Carrington et al., 1989;
Oh et al., 1995). TCV is naturally associated with a num-
ber of subviral RNAs including 194-base satellite RNA D
(satD; previously known as sat-RNA D) and satellite RNA
C (satC; previously known as sat-RNA C; Simon and
Howell, 1986). SatC is a 356-base recombinant RNA that
is composed of sequences similar to satD at its 59 end
and two regions derived from TCV genomic RNA at its 39
end (Fig. 1A).
Both plus and minus strands of TCV subviral RNAs are
templates for synthesis of complementary strands when
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346 GUAN, CARPENTER, AND SIMON
added to an in vitro transcription assay system that uses
RdRp-active extracts prepared from infected turnip plants
(Song and Simon, 1994). This assay system led to the
identification of a stem-loop structure at the 39 end of

atC plus strands as the promoter for complementary
inus-strand synthesis (Song and Simon, 1995). Mu-

agenesis and genetic selection studies conducted in
ivo confirmed the importance of this hairpin structure for
atC accumulation (Stupina and Simon, 1997; Carpenter
nd Simon, 1998). Two short elements on satC minus
trands, one located 11 bases from the 39 end (39-prox-

mal) and the other located 41 bases from the 59 end
59-proximal) were also identified using the in vitro tran-
cription system as important for plus-strand synthesis

Guan et al., 1997). These two elements appeared to
ave redundant functions since only one was required

or complementary strand synthesis in vitro. Both RNA
lements are composed of multiple consecutive C resi-
ues followed by multiple consecutive purines and have
o obvious internal secondary structures. In addition to

hese two elements, all carmovirus RNAs share a similar
equence at their 59 ends (called the carmovirus con-
ensus sequence or CCS) of unknown function. Here we
eport that the 59-terminal CCS of satC is important for
atC plus-strand accumulation in protoplasts. In addition,
equence in the 39-proximal element region in satC mi-

FIG. 1. (A) Schematic representations of TCV, satD, and satC. Similar
regions are shaded alike. Numbers indicate positions with respect to
locations in TCV genomic RNA. (B) The 39-end 21 bases of minus-
strand satC. The 39-proximal element is boxed. The CCS in the 39-
terminal and the 39-proximal element region is shaded. Arrows denote
the putative transcription initiation sites for complementary strand
synthesis in vitro.
us strands is not random. For efficient accumulation of
atC in vivo, the sequence may comprise an extension of
he 39-terminal CCS, a second CCS and/or multiple pu-
ines.

RESULTS AND DISCUSSION

he 39-terminal CCS of satC minus strands is
equired for satC plus-strand accumulation in vivo

The 39-proximal element (39-UCCCAAAGUAU) is con-
ained within positions 11 to 21 of satC minus strands
Fig. 1B; all numbering is from the 39 end of the minus
trand). When the 39 21 bases of satC minus strands are

oined to the 39 end of a Qb bacteriophage-associated
midivariant (MDV) RNA, which alone is not a template for
the TCV RdRp, complementary strands are synthesized
by the TCV RdRp in vitro (Guan et al., 1997). Addition of
nonviral bases to the 39 end of satC minus strands
esulted in transcription initiating exclusively internally in
he vicinity of the three consecutive C residues within the
9-proximal element. Like the 39 terminus of satC minus
trands (39-OH-CCCUAU), the 39-proximal element con-

ains a CCS “39-CC1–2(A/U)(A/U)(A/U)” whose comple-
ment is found at the 59 ends of all carmovirus plus-strand
genomic, subgenomic, and subviral RNAs (Guan et al.,
1997; see Fig. 1B).

These observations suggested that both the 39 CCS
nd the 39-proximal element of satC minus strands have

role in satC replication. However, deletion of the 39-
terminal 10 bases including the entire 39 CCS had no
effect on promoter activity in vitro, suggesting that the
39-terminal CCS might not be important for complemen-
tary strand synthesis (Guan et al., 1997). To investigate
the importance of the 39-terminal CCS in satC accumu-
lation in vivo (Fig. 2A), satC plus-strand transcripts con-
taining mutations in the CCS were inoculated together
with TCV genomic RNA onto protoplasts of Arabidopsis
thaliana. Total RNA extracted from the infected proto-
plasts at 24 h postinoculation (hpi) was used for RNA
gel-blot analysis of both plus- and minus-strand satC. As
shown in Fig. 2B, a single-base mutation of C to A at
position 2 (construct R3), which disrupted the 39-terminal
CCS, eliminated detection of satC plus strands. A single-
base mutation of C to G at position 3 (construct R1) also
generated no detectable plus-strand satC. Alteration of
the same base to A (construct R2) maintained the CCS,
and satC accumulated to detectable levels that were 15%
of wild-type. These results suggest that in the context of
the remaining satC promoter sequence, three consecu-
tive C residues are preferred. When the U residue at
position 4 was changed to G (construct R4), a low level
of plus-strand RNA (7% of wild-type) was detected. Re-
placement of U with G at position 6 (construct R5) re-
duced accumulation of satC plus strands to 2% of wild-
type. Similar results were obtained when double-base
mutations were introduced into positions 5 and 8 (con-

struct R7). No satC plus strands were detectable when
triple-base mutations were introduced into positions 5 to
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347cis-ACTING SEQUENCES FOR PLUS-STRAND RNA SYNTHESIS
7 (construct R8). In contrast, changing the U at position 7
to A (construct R6) did not affect satC accumulation.
Triple-base mutations in positions 7 to 9 (construct R9) or
five-base mutations in positions 6 to 10 (R10) reduced
satC plus-strand synthesis by only 50%, suggesting that
mutations beyond the 39-terminal CCS and/or U to A
change at position 6, which maintained the CCS, have
less severe effects on satC accumulation.

Although plus-strand RNA was undetectable or nearly
undetectable for constructs R1, R3, R5, or R8, minus-
strand RNA of these mutants was still detectable in
protoplasts and accumulated from 25 to 40% of wild-type
(Fig. 2B). Accumulation of minus strands of other mutants
was also less affected than that of plus strands. Alto-

FIG. 2. Mutagenesis studies of the minus-strand 39-terminal se-
uences of satC in protoplasts. (A) Mutations introduced into the
9-terminal region. SatC minus strand is represented by a black bar.
he 39-terminal 10 bases are shown under the bar and positions with

espect to location in the minus strand are indicated. The CCS is
haded. Dots represent no change of bases. Names of the constructs
ontaining the mutations are shown to the left. (B) RNA gel-blot analysis
f TCV genomic RNA (gRNA), satC plus strand [C(1)], and minus strand

C(2)]. For probing gRNA and C(1), equal amounts of total RNA iso-
ated from 2 3 105 protoplasts at 24 hpi were used. Double-stranded

RNA prepared from 8 3 105 protoplasts were used to detect satC minus
trands. None, no sat-RNA added.
gether, these results suggest that the 39-terminal CCS of
satC minus strand is important for accumulation of satC
in protoplasts and that the sequence likely functions
during plus-strand synthesis.

Since the requirement of the 39-terminal CCS in satC
minus strands in vivo differs from prior in vitro studies
where the 39 CCS was deleted without negative effect on
complementary strand synthesis (Guan et al., 1997), the
effect of site-specific mutations in the 39-terminal CCS on
transcription was assayed in vitro. A chimeric RNA tem-
plate [MC39(2)] was constructed by joining the 39-termi-
nal sequence (positions 1 to 40) of satC minus strands to
the 39 end of the Qb bacteriophage-associated MDV
RNA (Fig. 3A). In vitro transcription of MC39(2) RNA
using TCV RdRp extract produced two products: one
template-sized whose synthesis apparently initiates at

FIG. 3. In vitro transcription using partially purified RdRp and chi-
eric RNA templates containing mutations in the 39-terminal or 39-

roximal regions of satC minus strands. (A) Schematic representation
f the chimeric RNAs derived from MDV RNA (220 bases) and the
9-end 40 bases of minus-strand satC (black bar). Small open box
epresents the 39-proximal element. The 39-terminal 21 bases (posi-

tions 1 to 21) of satC minus strands are shown. The 39-terminal CCS
and the 39-proximal element CCS are shaded. The 39-proximal element
is boxed. Mutations introduced into the 39-terminal region or the 39-
proximal element are denoted by bold lowercase letters. Construct
names are shown to the left. Arrows denote the putative transcription
start sites in vitro. (B) Denaturing gel analysis of 32P-labeled products
synthesized in vitro. The ethidium bromide-stained gel showing the

migration positions and the relative levels of the templates is shown to
the left of the autoradiogram.
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the 39 terminus of satC minus strands, and the other
smaller than template-sized corresponding to initiation in
the vicinity of the internal C residues in the 39-proximal
element (Fig. 3B). Changing the A residue in position 5 in
the 39-terminal CCS to G generated construct MR39(2)
(Fig. 3A). In vitro transcription of MR39(2) revealed that
the mutation had little or no effect on full-length product
synthesis (Fig. 3B). This is in contrast with the in vivo
results where alteration of this A to G reduced satC
accumulation dramatically (construct R7, Fig. 2B). How-
ever, levels of the internally initiated transcripts were
reduced by 70%, suggesting that the mutation interferes
with RNA-RdRp internal initiation in the 39-proximal ele-
ment region.

The difference between the in vivo and in vitro results
on the necessity of the 39-terminal CCS suggests that
factors required to initiate plus-strand strand synthesis
on isolated minus strands differ from factors necessary
for replication beginning with the infecting plus strands.
One difference between in vitro transcription and in vivo
replication is that minus-strand templates are directly
added to the RdRp extract for in vitro transcription, while
in vivo, the minus strands used for plus-strand synthesis
must first be synthesized from plus-strand templates.
During synthesis of minus strands in vivo, the elongating
minus strand likely separates from the plus-strand tem-
plate with the exception of a short region where active
elongation is occurring. Although the length of this tran-
sient duplex region is not known for transcription by
RdRp, studies using Escherichia coli DNA-dependent
RNA polymerase (DdRp) indicate that the heteroduplex
region in the elongation “bubble” is composed of 9 to 12
bp (Kainz and Roberts, 1992; Wilson et al., 1999). When
transcription is completed, the short remaining duplex
between the 39 end of the nascent RNA and the template
likely need to dissociate for further RNA synthesis. One
possible reason for an in vivo but not in vitro need for the
39-terminal CCS is that the multiple consecutive A or U
bases facilitate this dissociation. Sivakumaran and Kao
(1999) recently reported that substitutions of A or U with
G at the the BMV minus-strand 39 terminus greatly re-
duced plus-strand RNA synthesis in vitro, suggesting
that the 39-terminal region is involved in initiation of RNA
synthesis. Although our results indicate that an A to G
change in the 39-terminal CCS of satC minus strands had
little or no effect on transcription initiation at the 39
terminus in vitro (MR39(2), Fig.3), the 39-terminal CCS,
particularly the 39-end three C residues, likely also play
an important role in initiation of plus-strand synthesis in
vivo. Many other plant RNA viruses such as tobamovi-
ruses, cucumoviruses, tymoviruses, alfalfa mosaic virus,
and potexviruses also contain multiple A or U bases
following the 39-end C residue in minus-strand RNA
(Ohno et al., 1984; Owen et al., 1990; Chng et al., 1996;

Hellendoorn et al., 1996; Van Rossum et al., 1997; Kim
and Hemenway, 1999).
Mutations in the 39-proximal element have little or no
effect on RNA replication in protoplasts

The 39-proximal element (contained within positions
11 to 21 of satC minus strand) is essential for transcrip-
tion in vitro in the absence of the 59-proximal element
(Guan et al., 1997). To test if the 39-proximal element is
required for satC accumulation in protoplasts, mutational
analysis was conducted as described above for the 39-
terminal CCS. Mutagenesis was concentrated on the
three consecutive C residues since all TCV promoters
contain three consecutive C residues (Simon, 1999).
None of the single-, double-, or triple-base mutations in
the three consecutive C residues had a significant effect
on satC accumulation (P1 to P4, Fig. 4B). Similar results
were obtained when 2- to 5-base mutations were intro-
duced into regions other than the three consecutive C
residues (P5 to P8, Fig. 4B). These results suggest that
the 39-proximal element, while important for transcription

FIG. 4. Mutational analysis of the 39-proximal element in protoplasts.
A) Mutations introduced into the 39-proximal element. The 39-proximal
lement is denoted by a small open box. Sequence of the 39-proximal
lement is shown under the bar and positions with respect to location

n the minus strand are indicated. The CCS is shaded. Construct names
re shown to the left. (B) RNA gel blot of TCV genomic RNA, and plus-
nd minus-strand satC containing mutations in the 39-proximal ele-
ent. See legend to Fig. 2.
in vitro in the absence of the 59-proximal element, is not
required in vivo.
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To investigate if the multiple consecutive C residues in
the 39-proximal element are required for promoter activity
of the element in vitro, the three C residues in the
element in construct MC39 (2) were replaced by “UUA”
(39 to 59 orientation) to generate construct MP39(2) (Fig.
3A). In vitro transcription of MP39(2) had no effect on
full-length complementary strand synthesis but pro-
duced no detectable internal initiation product (Fig. 3B).
This result is consistent with the finding that the same
mutations had little or no effect on RNA accumulation in
protoplasts (P4, Fig. 4B). These results suggest that the
three C residues in the 39-proximal element are only
required by the TCV RdRp for internal transcription initi-
ation in vitro or when the element is serving as a pro-
moter in vitro in the absence of the 39 CCS (Guan et al.,
1997).

In vivo genetic selection of the 39-terminal CCS and
the 39-proximal element of satC minus strands

To help resolve the sequence requirements for satC
accumulation in the 39-terminal 21 bases of minus
strands, in vivo genetic selection or SELEX (Systematic
Evolution of Ligands by EXponential enrichment) was
conducted. This method has advantages over site-di-
rected mutagenesis by allowing side-by-side selection
from a large number of random sequences as well as
sequence evolution (Ellington and Szostak, 1990; Tuerk
and Gold, 1990; Carpenter and Simon, 1998). A popula-
tion of satC transcripts containing 19 randomized bases
in positions 3 to 21 was coinoculated with TCV helper
virus onto 59 turnip seedlings (the complement of the C
residues in positions 1 and 2 is required for efficient
transcription by T7 RNA polymerase in vitro and was not
altered). The large number of plants inoculated was to
establish a high sequence complexity for genetic selec-
tion. Total RNA was extracted at 21 days postinoculation
(dpi) from the upper uninoculated leaves and assayed by
agarose gel electrophoresis followed by staining with
ethidium bromide. Forty-six of the 59 plants accumulated
satC-like species (data not shown). None of the 32 sat-
RNA molecules cloned from eight randomly selected
plants was wild-type and different satC species were
found in each plant (Table 1). Two RNA molecules (S1-16
and S1-18) obtained from plant 33 contained extra bases
in the randomized region probably inserted by the TCV
RdRp during replication. While several RNA molecules
(e.g., S1-2, S1-8, S1-9) had a C residue at position 3
similar to wild-type minus-strand satC, most RNA mole-
cules (13/20 species) contained an A or U residue at this
position. However, all the recovered sat-RNA species
contained at least three A or U bases following the
39-terminal two or three C residues, similar to the se-
quence found at the 39 ends of minus strands of other

carmovirus RNAs and establishing the requirements for
a CCS. Some RNA molecules (e.g., S1-2, S1-9, and S1-13)
had A or U residues that extended to positions 9 or 10.
These results strongly indicate that the CCS at the 39
terminus of minus strands is required for satC accumu-
lation in plants, which is consistent with the results
obtained from the site-directed mutagenesis studies us-
ing protoplasts (Fig. 2). Altogether, these results indicate
that the 39-terminal CCS in satC minus strands is re-
quired for replication and/or stability of the RNA in vivo.

Compared with the 39-terminus of minus strands, the
in vitro identified 39-proximal element was much less
conserved. All the recovered sat-RNA species contained
different sequences in the three consecutive C region of
the 39-proximal element. Unlike wild-type satC, none of
the cloned RNA molecules contained a CCS in the 39-
proximal element region. However, sequences similar to
the CCS composed of at least three A or U bases fol-
lowing a single C residue were present in the 39-proxi-
mal element region of 10/20 recovered RNA species. In
addition, most of the cloned sat-RNAs (16/20 species),

TABLE 1

First-Round in Vivo Selection

a Only the 39-end 21 bases of sat-RNA C minus strands are shown.
The two unchanged C residues at the 39 terminus are shown by
lowercase letters in italics. Sat-RNA molecules obtained from different
plants are separated by dividers. The wt 39-proximal element is boxed.
Polypurines within this element are in bold. The 39-terminal CCS and
the 39-proximal element CCS are shaded. Sequences similar to the
CCS are boxed in broken lines. Regular lowercase letters denote
differences from an arbitrarily selected “parental” molecule. The ques-
tion mark represents an ambiguous base.
like the wild-type sat-RNA, contained consecutive pu-
rines in the 39-proximal element region.
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To identify sat-RNA molecules that are more fit to
accumulate, total RNA from the 46 first-round plants was
pooled and reinoculated onto 30 turnip seedlings. Three
weeks later, satC-sized molecules accumulating in 8
randomly selected plants were cloned and sequenced
(Table 2). None of the RNA molecules previously identi-
fied in the first round were recovered (although se-
quence S2-5 differed from S1-12a or S1-12b by a single
base), indicating that the RNA molecules identified in the
first round were outcompeted for accumulation in the
second round by molecules that were likely present but
not cloned from the first round. Like the sequences found
in the first round, all RNA species obtained in the second
round contained the CCS at the 39 terminus of minus
strands, and most RNA molecules (10/12 species) had
consecutive purines in the 39-proximal element region.
Nine of 12 RNA species contained two consecutive C
residues following an A or U residue near the wild-type
three consecutive C region in the 39-proximal element
region. The consecutive C residues were followed by
polypurines in some RNA molecules such as S2-1a,
S2-1b, S2-10, and S2-11. In RNA species S2-3 and S2-6,
the consecutive C residues were followed by at least

TABLE 2

Second-Round in Vivo Selection

a See the legend to Table 1. Sequence groups are separated by
dividers. Two consecutive C residues following an A or U residue in or
near the wt three consecutive C region in the 39-proximal element are
underlined.

b Number of clones of the sequences found in different plants is
indicated.
three A or U bases to form a CCS. S2-6 was the only
species found in more than 3 plants. In addition, se-
quences containing a single C residue followed by three
or more A or U bases were found in the 39-proximal
element region of RNA molecules S2-3, S2-5, and S2-8.

Total RNAs from second-round plants were combined
and inoculated onto 12 turnip seedlings for a third and
final round of selection. Cloning of the progeny sat-RNA
accumulating in eight of the infected plants at 21 dpi
indicated that the wild-type minus-strand TCV genomic
RNA 39-terminal CCS (39-CCAUU) was present in all
clones (Table 3). Two main species (S2-6 and S2-8),
previously found in the second round, were recovered in
multiple plants. Like wild-type satC, S2-6 contained the
CCS at the 39 terminus as well as in the 39-proximal
element region. This suggests that the carmovirus con-
sensus sequence in the 39-proximal element contributes
to RNA accumulation in vivo. S2-8 was found in six plants
and contained eight A or U residues following the 39-end
C residues, suggesting that a long stretch of A or U
bases at the 39 terminus may also enhance RNA accu-
mulation. Other TCV-associated RNAs, including sat-
RNA D, defective interfering RNA G, and the two sub-
genomic RNAs (1.45 and 1.7 kb), do not contain a second
CCS near their terminal CCS and also contain seven to
nine A or U bases following consecutive G residues at
the 59 ends of their plus strands. The major SELEX
species S2-8 also contained a sequence (39-CAUUA)
similar to the carmovirus consensus sequence in the
39-proximal element region. Four previously unse-
quenced sat-RNA molecules (S3-1, S3-2, S3-3, and S3-4)
were also cloned, but each was a minor species de-
tected only in single plants.

Competition assays were carried out to determine
how well species S2-6 and S2-8 competed for accumu-
lation with wild-type satC. Equal amounts of plus-sense

TABLE 3

Third-Round in Vivo Selection

a See the legend to Table 1. Sequence groups are separated by
ividers.

b
 The number of clones of each sequence found in the plants is
indicated.
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transcripts of wild-type satC and sequence S2-6 or S2-8
were coinoculated with TCV helper virus onto six plants.
Sat-RNA molecules accumulating in the six plants were
cloned 3 weeks later. Only two out of 19 clones were
S2-6 in plants coinoculated with wild-type satC, while
only wild-type satC was recovered in plants coinoculated
with sequence S2-8. These results indicate that wild-type
satC is more competitive for accumulation than either of
the two RNA species identified by in vivo SELEX.

Mutations introduced into the 39-proximal element had
ittle or no effect on satC accumulation in protoplasts
Fig. 4B). However, in vivo SELEX results suggest that the
equence in this region is not random and thus this
lement may be involved in enhancing RNA accumula-

ion in plants. Like wild-type satC, the two third-round
inners S2-6 and S2-8 contained a CCS or a sequence

imilar to the CCS in the 39-proximal element region and
any of the other selected sequences contained poly-

urines within this region. It is noteworthy that in the
ite-directed mutagenesis study, mutations were intro-
uced only into the region of the three C residues or the
olypurines but not both. In addition, these mutants were
ot subjected to direct competition with wild-type satC.

Although wild-type satC was not recovered in the in
ivo SELEX, the wild-type sequence was recovered when
he 59-proximal element (14 bases) was subjected to

selection (Guan et al., 2000). It is likely that a combina-
tion of the shorter randomized sequence and the neces-
sity for specific nucleotides at many of the 14 positions of
the 59-proximal element contributed to recovery of the
wild-type sequence in that study.

In addition to the requirement of specific sequences,
cis-acting structures and/or RNA-RNA interactions between
the 39 terminus of minus strands (or the 59 terminus of plus
strands) and internal regions of viral RNA can be important
for plus-strand synthesis. For example, cis-acting se-
quences and stem-loop structures in the 59 region of PVX
genomic RNA are required for plus-strand synthesis (Kim
and Hemenway, 1996; Miller et al., 1998). Furthermore, long-
distance interactions between the 39 terminus of PVX mi-
nus-strand RNA (or the 59 terminus of the genomic RNA)
and an internal site are required for plus-strand RNA accu-
mulation (Kim and Hemenway, 1999). In addition to the
minus-strand 39-terminal CCS, 39-proximal element, and
59-proximal element (Guan et al., 2000), a hairpin structure
called the motif1-hairpin is required for plus-strand synthe-
sis in vivo and may serve as a replication enhancer (Nagy
et al., 1999). Further studies are currently underway to
understand how these elements function together during
satC plus-strand synthesis.

MATERIALS AND METHODS

Site-directed mutagenesis
Site-specific mutations were introduced into the 39-
terminal region of satC minus strands using polymerase
chain reaction (PCR). Oligonucleotides T7C59GNN,
T7C59N3, and T7C59N4 (Table 4) were used separately
with oligo 7 as primers for the PCRs. The template was
plasmid pT7C(1), which contains a full-length satC
cDNA immediately downstream from a T7 RNA polymer-
ase promoter (Song and Simon, 1995). The PCR product
was treated with T4 DNA polymerase and cloned into the
SmaI site of pUC 19. All the clones were sequenced and
contained a T7 RNA polymerase promoter upstream of
full-length plus-sense satC containing site-specific mu-
tations in the 39-terminal region.

To introduce mutations into the 39-proximal element,
oligonucleotide T7C59N1 or T7C59N2 was used with
oligo 7 as the primers. All PCR products were cloned into
pUC 19 as described above.

In vitro transcription and inoculation of Arabidopsis
protoplasts

SmaI-digested plasmids were subjected to in vitro
transcription using T7 RNA polymerase (Carpenter et al.,
1995). The synthesized RNA contained the wild-type 39
end. Protoplasts (5 3 106) prepared from Col-0 callus
cultures were inoculated with 20 mg of TCV genomic
RNA transcripts and 2.0 mg of either wild-type or mutant
satC transcripts as described previously (Kong et al.,

995).

NA gel-blot analysis

Equal amounts of total RNA isolated from 2 3 105

protoplasts at 24 h postinoculation were used for RNA
gel-blot analysis of TCV genomic RNA and plus-strand
satC (Kong et al., 1995). An oligonucleotide complemen-
tary to positions 269 to 288 of TCV and labeled with
[g-32P]ATP using T4 polynucleotide kinase was used to
detect the genomic RNA. The same blot was reprobed
with an oligonucleotide complementary to positions 175
to 199 of satC to detect satC plus strand. For probing
minus-strand satC, total RNA extracted from 8 3 105

infected protoplasts was annealed with 1.0 mg of wild-
type or mutant satC plus-strand transcripts in 30 ml of
annealing buffer (300 mM KCl, 50 mM Tris-HCl, 1 mM
EDTA at pH 8.0) and treated with RNase A (final concen-
tration 1.0 mg/ml) as described by Ishikawa et al. (1991).
Annealed RNAs were then treated with 0.1 mg/ml of
Pronase and 0.4% SDS at 30°C for 30 min and recovered
by extraction with phenol-chloroform and precipitation
with ethanol. The recovered RNAs were then subjected
to gel-blot analysis as described by Kong et al. (1995)
using an oligonucleotide complementary to positions 57
to 78 of satC minus strand. Autoradiograms were
scanned with a GS-700 densitometer (Bio-Rad).

Construction of RNA chimeras
RNA chimeras were constructed by joining positions 1
to 40 of satC minus strands to the 39 end of MDV RNA, a



ses.
sat-RN

352 GUAN, CARPENTER, AND SIMON
small RNA associated with Qb bacteriophage. cDNA
fragments containing positions 1 to 40 were amplified by
PCR from template pT7C(1). For construction of chime-
ras MC39(2), MP39(2), and MR39(2), oligonucleotides
C59, C59m, and C59mc were used respectively with oli-
gonucleotide C(2)40 as primers for the PCR. The PCR
products were treated with T4 DNA polymerase and
cloned into the SmaI site of pT7MDV (Axelrod et al.,
1991). Plasmids containing positions 1 to 40 of satC in
minus-strand orientation were selected and linearized
with SmaI for in vitro transcription using T7 RNA poly-
merase.

In vitro transcription using the TCV RdRp

In vitro transcription using partially purified TCV RdRp
was carried out as described previously (Guan et al.,
1997).

In vivo genetic selection

In vivo genetic selection was performed as described
previously (Carpenter and Simon, 1998). To generate
full-length satC templates containing randomized bases
in positions 3 to 21, a cDNA product containing positions
22 to 356 of satC was amplified by PCR from pT7C(1)
using primers C22-41 and oligo 7. The PCR fragment was

T

List of Oligonucleotide

Application/
construct Name

Site-directed
mutagenesis

T7C59N1 59-T7-GGGATAACTAANN

T7C59N2 59-T7-GGGATAACTA(A/C
(A/T)CAATACTACGCA

T7C59GNN 59-T7-GNNATAACTAAGG
T7C59N3 59-T7-GGG(A/C)(T/C)(A/G
T7C59N4 59-T7-GGGA(T/C)(A/T)(A/

CAA
Construction of

chimeric RNA
C59 59-GGGATAACTAAGGGT

C59m 59-GGGATAACTAAAATT
C59mc 59-GGGACAACTAAGGGT
oligo C(2)40 59-CATTAGTTGCGTAGTA

SELEX T7C59SEL 59-T7-GGNNNNNNNNN
TAATGC

C22-41 59-CAATACTACGCAACT
59-RACE PCR 59-RACE-G10 59-GGCCACGCGTCGACT
pT7S2-8 T7(2)39sw1 59-T7-GGTAAATATTCCA
pT7S2-6 T7(2)39sw2 59-T7-GGTAATCTGGTTA
39-primer oligo 7 59-GGGCAGGCCCCCCG

a “T7” indicates T7 promoter sequence (59-GTAATACGACTCACTATA
Alternative mutations at a particular position are included in parenthe

b “1” and “2” polarities refer to homology and complementarity with
purified through an agarose gel to eliminate contamina-
tion of full-length satC sequence in pT7C(1). The purified
product was then used as template in a second PCR with
primers T7C59SEL and oligo 7 to generate full-length
plus-sense satC cDNA containing randomized bases in
positions 3 to 21.

For plant infection, transcripts (;5 mg/plant) synthe-
sized directly from the second PCR product were coin-
oculated with TCV helper virus (total RNA extracted from
plants infected with TCV genomic RNA transcripts, ;5
mg/plant) onto 59 two-week-old turnip seedlings (Li et al.,
1989). Total RNA was prepared from uninoculated leaves
at 21 days postinoculation and subjected to agarose gel
electrophoresis to determine which plants were accumu-
lating satC-like species. SatC-sized species accumulat-
ing in 8 randomly selected plants were amplified by
59-RACE (rapid amplification of cDNA ends) PCR as de-
scribed below and cloned into the SmaI site of pUC 19.
All clones were sequenced using a primer complemen-
tary to positions 60 to 79 of satC plus strand.

For the second-round inoculations, total RNA from
first-round 46 plants (the other 13 plants did not contain
satC species) containing relatively equal amounts of
sat-RNA species as visualized by ethidium bromide-
stained agarose gels was pooled and reinoculated onto
30 turnip seedlings (;5 mg/plant). SatC-sized species
extracted from 8 plants at 21 dpi were assayed as de-
scribed above. For the third-round selection, total RNA

for PCR in This Study

encea

Position in
satC-RNA Polarityb

ATAC 1–22 1

/C)(T/G)(T/A)(C/A)-(A/G)(T/G) 1–38 1

1–14 1
AAGGGTTTCATAC 1–22 1
G/A)(T/G)(A/T)AGGGTTTCATA- 1–24 1

1–19 1

C 1–22 1
A 1–21 1

22–40 2
NNNNNCAATACTACGCAAC- 1–41 1

22–41 1
GGGGGGGGGG

C 1–19 (in S2-8) 1
1–17 (in S2-6) 1
338–356 2

epresents randomized bases. Mutations are denoted by bold letters.

A C plus strand, respectively.
ABLE 4

s Used

Sequ

NTTTC

)GGG(T
ACTAA
G
/C)ACT
C/T)(C/

TTCA

TTCATA
TTCAT
TTG

NNNNN

AATGC
AGTAC

GTAAT
TTGG
TCCGA

). “N” r
from the 30 plants of the second round were pooled and
reinoculated onto 12 plants (;5 mg/plant).
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59-RACE PCR of satC-like species

59-RACE PCR was carried out according to Gibco
BRL’s 59-RACE PCR protocol with modifications. Briefly,
satC-sized species were purified from agarose gel and
subjected to reverse transcription in the presence of
oligo 7. After being treated with RNase A (0.1 mg/ml) and

Nase H (1 U/ml) mix for 30 min at 37°C, the first-strand
cDNA was purified from agarose gels to eliminate the
unused primer and dNTPs. The purified cDNA was then
treated with terminal deoxynucleotidyltransferase in the
presence of 2 mM dCTP. Oligonucleotide 59-RACE-G10
was used with oligo 7 in a PCR to amplify the dCTP-tailed
cDNA.

Competition assays between wild-type satC and
sequence S2-6 or S2-8

Since S2-6 and S2-8 clones obtained from in vivo
SELEX contained additional bases added during cloning,
it was necessary to remove the additional bases to
generate biologically active RNA. To construct full-length
cDNA of sequences S2-6 and S2-8, oligonucleotides
T7(2)39sw1 and T7(2)39sw2 were used, respectively,
with oligo 7 as primers in the PCR. PCR products were
treated with T4 DNA polymerase and then cloned into
the SmaI site of pUC 19 to generate pT7S2-6 and
pT7S2-8, which contained full-length cDNA of sequences
S2-6 and S2-8 (in plus-sense orientation) immediately
downstream from a T7 RNA polymerase promoter, re-
spectively. To obtain RNA transcripts, plasmids pT7S2-6
and pT7S2-8 were linearized with SmaI and then sub-
jected to in vitro transcription using T7 RNA polymerase.

To conduct competition assays, equal amounts of tran-
scripts (0.2 mg/plant) of wild-type satC and sequence
S2-6 or S2-8 were coinoculated onto six turnip seedlings
together with TCV genomic RNA transcripts (2 mg/plant).
Total RNA was isolated at 21 dpi and satC-like molecules
were cloned as described above.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation Grants
MCB-9728277 and MCB-9630191 to A.E.S.

REFERENCES

Andino, R., Rieckhof, G. E., and Baltimore, D. (1990). A functional
ribonucleoprotein complex forms around the 59 end of poliovirus
RNA. Cell 63, 369–380.

Andino, R., Rieckhof, G. E., Achacoso, P. L., and Baltimore, D. (1993).
Poliovirus RNA synthesis utilizes an RNP complex formed around the
59-end of viral RNA. EMBO J. 12, 3587–3598.

xelrod, V. D., Brown, E., Priano, C., and Mills, D. R. (1991). Coliphage
Qb RNA replication: RNA catalytic for single-strand release. Virology
184, 595–608.
Buck, K. W. (1996). Comparison of the replication of positive-stranded
RNA virus of plants and animals. Adv. Virus Res. 47, 159–251.

O

Carpenter, C. D., Oh, J. W., Zhang, C., and Simon, A. E. (1995). Involve-
ment of a stem-loop structure in the location of junction sites in viral
RNA recombination. J. Mol. Biol. 245, 608–622.

Carpenter, C. D., and Simon, A. E. (1998). Analysis of sequences and
predicted structures required for viral satellite RNA accumulation by
in vivo genetic selection. Nucleic Acids Res. 26, 2426–2432.

Carrington, J. C., Heaton, L. A., Zuidema, D., Hillman, B. I., and Morris,
T. J. (1989). The genome structure of turnip crinkle virus. Virology 170,
219–226.

Chng, C. G., Wong, S. M., Mahtani, P. H., Loh, C. S., Goh, C. J., Kao, M. C.,
Chung, M. C., and Watanabe, Y. (1996). The complete sequence of a
Singapore isolate of odontoglossum ringspot virus and comparison
with other tobamoviruses. Gene 171, 155–161.

Duggal, R., Lahser, F. C., and Hall, T. C. (1994). cis-Acting sequences in
the replication of plant viruses with plus-sense RNA genomes. Annu.
Rev. Phytopathol. 32, 287–309.

Duggal, R., and Hall, T. C. (1995). Interaction of host proteins with the
plus-strand promoter of brome mosaic virus RNA-2. Virology 214,
638–641.

Ellington, A. D., and Szostak, J. W. (1990). In vitro selection of RNA
molecules that bind specific ligands. Nature 346, 818–822.

Guan, H., Song, C., and Simon, A. E. (1997). RNA promoters located on
minus-strands of a subviral RNA associated with turnip crinkle virus.
RNA 3, 1401–1412.

Guan, H., Carpenter, C. D., and Simon, A. E. (2000). Requirement of a
59-proximal linear sequence on minus strands for plus-strand syn-
thesis of a satellite RNA associated with Turnip crinckle virus. Virol-
ogy 268, 355–363.

Hellendoorn, K., Michiels, P. J., Buitenhuis, R., and Pleij, C. W. (1996).
Protonatable hairpins are conserved in the 59-untranslated region of
tymovirus RNAs. Nucleic Acids Res. 24, 4910–4917.

Ishikawa, M., Meshi, T., Ohno, T., and Okada, Y. (1991). Specific cessa-
tion of minus-strand RNA accumulation at an early stage of tobacco
mosaic virus infection. J. Virol. 65, 861–868.

Kainz, M., and Roberts, J. (1992). Structure of transcription elongation
complexes in vivo. Science 255, 838–841.

Kim, K. H., and Hemenway, C. L. (1996). The 59 nontranslated region of
potato virus X RNA affects both genomic and subgenomic RNA
synthesis. J. Virol. 70, 5533–5540.

Kim, K.H., and Hemenway, C. L. (1999). Long-distance RNA-RNA inter-
actions and conserved sequence elements affect potato virus X
plus-strand RNA accumulation. RNA 5, 636–645.

ong, Q., Oh, J. W., and Simon, A. E. (1995). Symptom attenuation by a
normally virulent satellite RNA of turnip crinkle virus is associated
with the coat protein open reading frame. Plant Cell 7, 1625–1634.

ong, Q., Wang, J., and Simon, A. E. (1997) Satellite RNA-mediated
resistance to turnip crinkle virus in Arabidopsis involves a reduction
in virus movement. Plant Cell 9, 2051–2063.

i, X. H., Heaton, L. A., Morris, T. J., and Simon, A. E. (1989). Turnip
crinkle virus defective interfering RNAs intensify viral symptoms and
are generated de novo. Proc. Natl. Acad. Sci. USA 86, 9173–9177.
iller, E. D., Plante, C. A., Kim, K. H., Brown, J. W., and Hemenway, C.
(1998). Stem-loop structure in the 59 region of potato virus X genome
required for plus-strand RNA accumulation. J. Mol. Biol. 284, 591–
608.

agy, P. D., Pogany, J., and Simon, A. E. (1999). RNA elements required
for RNA recombination function as replication enhancers in vitro and
in vivo in a plus strand RNA virus. EMBO J. 18, 5653–5665.

iesters, H. G., and Strauss, J. H. (1990). Defined mutations in the 59
nontranslated sequence of Sindbis virus RNA. J. Virol. 64, 4162–4168.

h, J. W., Kong, Q., Song, C., Carpenter, C. D., and Simon, A. E. (1995).
Open reading frames of turnip crinkle virus involved in satellite
symptom expression and incompatibility with Arabidopsis thaliana
ecotype Dijon. Mol. Plant-Microbe Interact. 8, 979–987.
hno, T., Aoyagi, M., Yamanashi, Y., Saito, H., Ikawa, S., Meshi, T., and
Okada, Y. (1984). Nucleotide sequence of the tobacco mosaic virus



O

P

P

P

P

P

S

S

S

S

S

S

T

V

W

354 GUAN, CARPENTER, AND SIMON
(tomato strain) genome and comparison with the common strain
genome. J. Biochem. (Tokyo) 96, 1915–1923.

wen, J., Shintaku, M., Aeschleman, P., Ben Tahar, S., and Palukaitis, P.
(1990). Nucleotide sequence and evolutionary relationships of cu-
cumber mosaic virus (CMV) strains: CMV RNA 3. J. Gen. Virol. 71,
2243–2249.

ardigon, N., and Strauss, J. H. (1992). Cellular proteins bind to the 39
end of Sindbis virus minus-strand RNA. J. Virol. 66, 1007–1015.

ardigon, N., and Strauss, J. H. (1996). Mosquito homolog of the La
autoantigen binds to Sindbis virus RNA. J. Virol. 70, 1173–1181.

ogue, G. P., Marsh, L. E., and Hall, T. C. (1990). Point mutations in the
ICR2 motif of brome mosaic virus RNAs debilitate plus-strand repli-
cation. Virology 178, 152–160.

ogue, G. P., and Hall, T. C. (1992). The requirement for a 59 stem-loop
structure in brome mosaic virus replication supports a new model for
viral positive-strand RNA initiation. J. Virol. 66, 674–684.

ogue, G. P., Marsh, L. E, Connell, J. P., and Hall, T. C. (1992). Require-
ment for ICR-like sequences in the replication of brome mosaic virus
genomic RNA. Virology 188, 742–753.

imon, A. E. (1999). Replication, recombination, and symptom-modula-
tion properties of the satellite RNAs of turnip crinkle virus. In “Current
Topics in Microbiology and Immunology: Satellites and Defective
Viral RNAs” (P. K. Vogt and A. O. Jackson, Eds.), Vol. 239, pp. 19–34.

Springer-Verlag, Berlin.

ivakumaran, K., and Kao, C. C. (1999). Initiation of genomic plus-strand
RNA synthesis from DNA and RNA templates by a viral RNA-depen-
dent RNA polymerase. J. Virol. 73, 6415–6423.

imon, A. E., and Howell, S. H. (1986). The virulent satellite RNA of
turnip crinkle virus has a major domain homologous to the 39 end of
the helper virus genome. EMBO J. 5, 3423–3428.

ong, C., and Simon, A. E. (1994). RNA-dependent RNA polymerase
from plants infected with turnip crinkle virus can transcribe (1)- and
(2)-strands of virus-associated RNAs. Proc. Natl. Acad Sci. USA 91,
8792–8796.

ong, C., and Simon, A. E. (1995). Requirement of a 39-terminal stem-
loop in in vitro transcription by an RNA-dependent RNA polymerase.
J. Mol. Biol. 254, 6–14.

tupina, V., and Simon, A. E. (1997). Analysis in vivo of turnip crinkle
virus satellite RNA C variants with mutations in the 39-terminal
minus-strand promoter. Virology 238, 470–477.

uerk, G., and Gold, L. (1990). Systematic evolution of ligands by
exponential enrichment: RNA ligands to bacteriophage T4 DNA poly-
merase. Science 249, 505–510.

an Rossum, C. M., Neeleman, L., and Bol, J. F. (1997). Comparison of
the role of 59 terminal sequences of alfalfa mosaic virus RNAs 1, 2,
and 3 in viral RNA replication. Virology 235, 333–341.
ilson, K. S., Conant, C. R., and van Hippel, P. H. (1999). Determinants
of the stability of transcription elongation complexes: Interactions of

the nascent RNA with the DNA template and the RNA polymerase. J.
Mol. Biol. 289, 1179–1194.


	INTRODUCTION
	FIG. 1

	RESULTS AND DISCUSSION
	FIG. 2
	FIG. 3
	FIG. 4
	TABLE 1
	TABLE 2
	TABLE 3

	MATERIALS AND METHODS
	TABLE 4

	ACKNOWLEDGMENTS
	REFERENCES

