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Abstract 

Progress in biology has generated numerous lists of genes that share some property. But 
advancing from these lists of genes to understanding their roles is slow and unsystematic. Here 
we use RNA silencing in C. elegans to illustrate an approach for prioritizing genes for detailed 
study given limited resources. The partially subjective relationships between genes forged by both 
deduced functional relatedness and biased progress in the field was captured as mutual 
information and used to cluster genes that were frequently identified yet remain understudied. 
Some proteins encoded by these understudied genes are predicted to physically interact with 
known regulators of RNA silencing, suggesting feedback regulation. Predicted interactions with 
proteins that act in other processes and the clustering of studied genes among the most frequently 
perturbed suggest regulatory links connecting RNA silencing to other processes like the cell cycle 
and asymmetric cell division. Thus, among the gene products altered when a process is perturbed 
could be regulators of that process acting to restore homeostasis, which provides a way to use 
RNA sequencing to identify candidate protein-protein interactions. Together, the analysis of 
perturbed transcripts and potential interactions of the proteins they encode could help prioritize 
candidate regulators of any process.  

Introduction 

Genes and gene products are often collected as lists based on unifying characteristics or based 
on experiments. Examples include genes that show enrichment of a chromatin modification, 
mRNAs that change abundance in response to a mutation, and proteins that interact with another 
protein. After the initial identification of a set of genes as belonging to a list, multiple approaches 
(1) are needed to generate an explanatory model. However, many genes do not receive further 
attention, as evidenced by recent meta-analyses, which highlighted numerous understudied 
genes in humans (2,3). Since single publications often analyze only one or a few genes, a wider 
view of genes with roles in a process could be gained by comparing lists generated by several 
studies. Such exploration could identify genes that are present in multiple lists but have not yet 
been selected for detailed study. Identifying these understudied genes is especially useful during 
the early stages of a field, when coherent models for most observed phenomena have not yet 
emerged. While this approach is also extensible to lists of anything that is used to characterize 
living systems (changes in lipids, metabolites, localizations, etc.), here we focus on lists of 
mRNAs, proteins, and small RNAs generated by the field of RNA silencing in the nematode C. 
elegans. 

A gene present in many lists could be regulated in multiple separable ways and/or be 
regulated in one or a few ways by connected sets of regulators (Fig. 1A). For example, mRNA 
levels could be regulated through changes in transcription, turnover, localization, small RNA 
production, etc. or all changes could occur because of turnover regulation by a connected set of 
regulators. Changes in such genes could alter specific regulatory outputs, making them 
integrators of inputs from many other regulators. Alternatively, they could have no measurable 
consequence but might still be experimentally useful as general indicators of perturbation. One 
way that organisms could use general sensing of perturbation in a process could be to return the 
process to the pre-perturbation state through feedback (4). Such active resetting would enable 
restoration of homeostasis faster than through the dissipation of the perturbation alone. 

Here we present an approach to identify regulated but understudied genes in the field of 
RNA silencing in C. elegans. While these genes could play a variety of roles, we find that some 
of these genes encode predicted influencers of RNA-regulated expression that can directly 
interact with key regulators of RNA silencing. Others could serve as regulatory links that connect 
RNA silencing with other processes. The many hypotheses generated through these analyses 
need to be evaluated using experiments that selectively perturb regulatory interactions.  
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Materials and Methods 

Data tables from 82 studies on RNA silencing in C. elegans that were published between 
2007 and 2022 were downloaded (Table S1), reformatted manually and/or using custom scripts, 
and filtered to generate lists that only include entries with reported p-values or adjusted p-values 
< 0.05, when such values were available. Gene names were standardized across datasets using 

tools from Wormbase (5). The top ‘g’ genes that occur in the greatest numbers of tables were 
culled as the most frequently identified genes. A measure for the extent of regulation of each gene 

(rg) was used to aid their prioritization for detailed study. Co-occurrence patterns of genes in 

different tables were captured using the Jaccard distance (dJ) (6) or a symmetric measure of 

normalized mutual information (7), defined here as Historical Mutual Information (HMI). The dJ 
values were used to generate a dendrogram using the average linkage method (Fig. 1). HMI was 
used to group genes into clusters according to the Girvan-Newman algorithm (8) and different 
sets of genes were highlighted (Fig. 8). Gene ontology (GO) analyses were performed using Gene 
Ontology Resource (https://geneontology.org/; (9,10)).  

Prediction of dimer formation between the 18 proteins encoded by understudied genes 
among the top 25 genes and 25 key regulators of RNA silencing were obtained using AlphaFold 
2 (11,12) run on a high-performance cluster (Zaratan at UMD) and/or using the AlphaFold 3 (13) 
server online (https://golgi.sandbox.google.com/). Large regulators (DCR-1, EGO-1, ZNFX-1, 
NRDE-2, and MET-2) were tested on the AlphaFold 3 server initially and positive hits, if any, were 
examined again using AlphaFold 2 (e.g., interaction of EGO-1 with W09B7.1). The computed 
models were processed using custom shell scripts, python programs, and ChimeraX (14). Briefly, 
the highest ranked model for each pair of proteins was depicted with the predicted aligned error 
used to highlight inter-protein interactions as pseudobonds colored according to the alphafold pae 
palette on ChimeraX (Movie S1 to S93). For models that satisfy the criteria for maxPae (<5 Å) 
and for distance (<6 Å), an approximation of the interaction area was calculated by isolating the 
mutually constrained residues and using the ‘buriedarea’ command (ChimeraX). This area was 
divided by the product of the number of amino acids in each protein to get a normalized value and 
scaled uniformly before plotting (e.g., Fig. 2B). Finally, the ranking scores (0.8*ipTM + 0.2*pTM 
for AlphaFold 2.3 and 0.8*ipTM + 0.2*pTM + 0.5*disorder for AlphaFold 3) were used to shade 
the circle representing each interaction (Fig. 2B) and/or plotted (Fig. 5A). All interactions predicted 
in the study were summarized into a network diagram (Fig. 8G) using Gephi and Adobe Illustrator.  

See Supplemental Material for detailed materials and methods. 

Results 

Many genes have been repeatedly reported within data tables but remain understudied.  

 To determine if there are any understudied regulated genes that are relevant for RNA 
silencing in C. elegans, we examined data from past studies in the field. While complete 
replication of each study might be needed for direct comparisons, this goal is impractical. Even 
beginning with the ‘raw’ data deposited to public resources (e.g., fastq files after RNA-seq) and 
repeating the analyses reported in a publication is not always feasible. Summary tables from 
previous analyses presented in publications provide a practical intermediate level of data to use 
for comparisons across studies. Therefore, we collated a total of 398 tables from 82 publications 
for comparison (see methods and Table S1 for list of tables) and joined the tables together after 
standardizing gene names to yield genes that can be compared for presence or absence across 
the 398 lists (Fig. 1B). About 86% (342 of 398) of the included gene lists document RNA changes 
(mRNA, small RNA, or total RNA) that accompany a perturbation. Of the remaining ~14%, some 
lists document co-immunoprecipitating proteins (19), were pre-defined enrichment lists (24), or 
are based on other experiments (13). To prioritize a set of genes (𝑔) that receive extensive 

regulatory input and/or that encode proteins that interact with many other proteins and are yet 
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included in selective lists, we propose a metric rg (Fig. 1B). Since the likelihood of including a 
gene from the lists increases with 𝑔, the metric is specified with a subscript for each analysis (e.g., 
𝑟25 refers to a regulation score when the top 25 genes that are most commonly present in lists 

are considered) and defined to be: 

𝑟𝑔 ≔  ∑
𝑆𝑖

𝑇𝑖

𝑛

𝑖=1

  

where 𝑔 = size of gene set chosen for analysis, 𝑛 = total number of lists with altered genes, 𝑆𝑖 = 
number of genes from the 𝑖th list that is also present in the gene set 𝑔, and 𝑇𝑖  = total number of 

genes in the 𝑖th list. The larger the set of genes (𝑔) selected, the greater the chance of a dataset 

(with Ti genes) having at least one overlapping gene within the selected gene set (probability 

given by P(Si > 0) in Fig. 1C). The metric 𝑟𝑔 is a decision aid that helps with choosing genes for 

experimental analysis and is not to be taken as an objective measure of the importance of the 
gene for the biological process under study. 

The top 25 genes sorted according to their 𝑟25 values included the germline Argonaute 
HRDE-1 (15), which has been the subject of numerous studies (Fig. 1D). While most other genes 
are understudied (fewer than 10 publications on WormBase), among the 25 genes is sdg-1, which 
was recently reported to be regulated by the double-stranded RNA (dsRNA) importer SID-1 and 
encodes a protein with a suggested role in feedback regulation of heritable RNA silencing by 
colocalizing with perinuclear germ granules (16). This discovery suggests that the analysis of the 
additional genes with high 𝑟25 values could also be fruitful. Of the 18 understudied genes that 

encode proteins, seven had predicted structures of high confidence (i.e., domains with predicted 
local distance difference test (pLDDT) > 90) in the AlphaFold Protein Structure Database (12). 
These structures were then used to identify related protein domains using Foldseek (17) (Fig. 1E; 
E-value < 0.05). These include conserved domains, most of which have known biochemical 
activities: de-ubiquitinase (E01G4.5), SPK (C08F11.7), aspartic protease (K02E2.6), RNAse H1 
(RNH-1.3), F-box B (FBXB-97), BTB plus MATH (BATH-45), and RNA Recognition Motif 
(R06C1.4). Three more proteins have been proposed to be nucleocapsid-like proteins encoded 
by genes within retrotransposons ((16,18); F15D4.5, C38D9.2, and W09B7.1 in Fig. 1E). These 
candidates can be experimentally analyzed in the future for possible roles in RNA silencing. To 
explore the relationships between these genes (Fig. 1F and 1G), we clustered the genes and 
generated a dendrogram where genes present together in different lists are closer together (see 
supplementary methods). The dendrogram had a cluster (red in Fig. 1G) that included all four 
pseudogenes, suggesting that this method could capture functional relatedness despite the 
limitations and biases introduced by the available data.  

Multiple proteins encoded by the top 25 genes are predicted to interact with known 
regulators of RNA silencing.  

In general, understudied regulated genes could play diverse roles, some of which could 
impact RNA silencing. Such feedback during RNA silencing is supported by recent observations. 
For example, animals typically recover from silencing initiated by dsRNA within the germline (19) 
or in somatic cells (20). This recovery occurs despite the presence of amplification mechanisms, 
suggesting that silencing ends either when the trigger dsRNA runs out and/or because of 
homeostatic control through feedback inhibition. In support of self-limiting behavior that is 
expected upon feedback inhibition, an inhibitor of RNA silencing is recruited to genes targeted by 
dsRNA (21) and a regulatory loop limits the production of some endogenous small RNAs (22). 
Some of the top understudied regulated genes identified here could play a role in the homeostatic 
return after perturbation. The return could be achieved by modulating the activity of factors that 
promote RNA silencing in a variety of ways, including regulation of transcription, post-
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transcriptional RNA processing, RNA localization, translation, post-translational modifications on 
proteins, protein localization, etc. Of these possibilities, one that could be surveyed 
computationally is regulation through direct protein-protein interactions. Therefore, to test if any 
of the proteins encoded by the top 25 genes could interact with known regulators of RNA silencing, 
we examined the potential for protein-protein interactions using their predicted structures.  

 We selected 25 known regulators of RNA silencing (see Fig. 2A) chosen for their roles in 
different phases of the deduced mechanism(s) of RNA silencing (23-25). These include proteins 
with roles in the processing of dsRNA and its regulators; Argonaute proteins and their regulators; 
proteins with roles in secondary small RNA production and its regulators; components of germ 
granules; and co-transcriptional regulators (Fig. 2A). We then examined their predicted 
interactions with the 18 proteins encoded by understudied regulated genes among the top 25 
(highlighted in red, Fig. 1G). For 20 RNA regulators, we used AlphaFold 2, which makes extensive 
use of multiple sequence alignments for computing inter-protein interactions and has a success 
rate of ~50-60% (26,27). Since the computational cost of AlphaFold 2 escalates with the number 
of amino acids, interactions with the remaining 5 larger regulators (DCR-1, EGO-1, ZNFX-1, 
NRDE-2, and MET-2) were tested on the recently available but proprietary AlphaFold 3 server 
(13), which can predict interactions with ligands, and as with AlphaFold 2, uses multiple sequence 
alignments for its structure predictions. To stratify the predicted interactions, we initially 
considered the maximal inter-protein predicted aligned error (PAE) and the distance between the 
interacting residues (distance), which was allowed to be up to twice the length of hydrogen bonds 
(~3 Å (28)). Examining interactions with a criterion of PAE less than 5 (which is more stringent 
than the 8 Å error that has been used successfully (29)) revealed numerous interactions (blue in 
Fig. 2B). Therefore, to constrain the predictions further, we used the ranking scores, which are a 
combination of interface-predicted template modeling (ipTM) and predicted template modeling 
(pTM) scores: 0.8*ipTM + 0.2*pTM for AlphaFold 2.3 (11) and 0.8*ipTM + 0.2*pTM + 0.5*disorder 
for AlphaFold 3 (13). We only considered interactions with a ranking score greater than 0.6, which 
is relatively high given than ipTM scores as low as ~0.3 can yield true positives (30), and that 
constrain a minimum of 20 residues in the proteins encoded by understudied genes (not grey in 
Fig. 2B), which we define as predicted interactions of high confidence. Together, these criteria 
identified 32 interactions (Fig. 2B and Movies S1 to S32). Among the regulators, RDE-3 and RDE-
8 had the highest numbers of predicted interactors (5 proteins each) and among the proteins 
encoded by understudied genes, FBXB-97 had the highest number of predicted interactors (7 
proteins). These high-confidence interactors included proteins that were predicted to interact with 
every phase of the deduced mechanism(s) for RNA silencing (Fig. 2C). Since the precise numbers 
of interacting residues required for a meaningful interaction in vivo is variable and unknown, 
interactions that constrain fewer residues could have measurable impacts on function. 
Nevertheless, we conservatively designate each protein that is predicted to interact with one or 
more RNA regulators with relatively high confidence as a Predicted Influencer of RNA-regulated 
Expression (PIRE). We refer to five of these as PIRE-1 through PIRE-5 (Y20F4.4, C08F11.7, 
E01G4.5, F15D4.5, and K02E2.6, respectively; Fig. 2D) and preserve the names of the four that 
were already given names based on structural homology (subunit of the Translocase of the Inner 
Mitochondrial Membrane TIMM-17B.2, the F-box B protein FBXB-97 and the RNase H protein 
RNH-1.3) or after detailed study (the SID-1-dependent gene protein SDG-1). For convenience, 
these nine putative interactors (and any additional interactors identified below) are collectively 
referred as PIRE proteins here. This provisional designation can be amended should more 
specific information regarding their roles be obtained through future experimental studies.  

Each of these interactions (Fig. 2B and Movie S1 to S32) suggest hypotheses for their 
functional impact based on the known roles of RNA regulators and the domains present in PIRE 
proteins (Fig. 1E). The two PIRE proteins encoded by genes within retrotransposons (PIRE-4 and 
SDG-1) that also interact with regulators of RNA silencing, supports the idea that retrotransposon-
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encoded genes influence their own RNA-mediated regulation (e.g., (16)). FBXB-97, which is 
predicted to be an F-box protein (31), could promote ubiquitin-mediated degradation of its 
interactors (RDE-4, ERI-1, NRDE-3, DEPS-1, PID-2, RDE-8, and RDE-3), sequester them 
(inhibiting their activity), or potentially promote ubiquitination of their interacting RNA (32). A 
precedent for such an intersection between ubiquitin-mediated protein degradation and small 
RNA-mediated RNA regulation is the role for a ubiquitin ligase in degrading Argonautes when 
there is extensive base-pairing between miRNAs and their targets (33,34). PIRE-5, which is 
predicted to be a protease, could cleave its interactors (ERI-1, PID-2, RDE-8, and SET-25) to 
regulate their activity – a mode of regulation that has been recently elucidated for Argonaute 
proteins (35) and implicated in RNA silencing within the germline (36). Additional PIRE proteins 
with confidently predicted domains (e.g., RNase H in RNH-1.3, multiple domains in PIRE-3, and 
SPK domain in PIRE-2) potentially implicate new biochemical activities in the process of RNA 
silencing. In all, two general modes of interaction between PIRE proteins and the tested regulators 
of RNA silencing that are not mutually exclusive could be discerned (Fig. 3). In one mode 
exemplified by FBXB-97 (Fig. 3, left), the interactions with most regulators involve nearly the same 
set of residues. In the other mode exemplified by PIRE-3 (Fig. 3, right), interactions with different 
regulators involve different sets of residues. In summary, predictions using AlphaFold identify 
numerous interactions that inspire follow-up work to test hypotheses about the roles of PIRE 
proteins in RNA silencing.  

Predictions by AlphaFold 2 and AlphaFold 3 do not always agree. 

While AlphaFold 2 predicted all the interactions classified as high-confidence interactions, 
the one interaction predicted by AlphaFold 3 (EGO-1 and W09B7.1) with a maximal PAE <5Å and 
distance <6Å constrained fewer than 20 residues (Fig. 2B, Fig. S1, and Fig. S2). The reason for 
this extreme discrepancy is unclear.  

To directly compare both approaches for predicting protein-protein interactions, we 
examined some of the interactions predicted by each approach using the other. We first examined 
significant interactions predicted with a high ranking score according to AlphaFold 2 (> 0.8, Fig. 
4A). Of these, only the interaction between RNH-1.3 and RDE-3 was confidently predicted by 
AlphaFold 3, albeit with a lower score (0.85 for AF2 vs 0.68 for AF3). Aligning both predicted 
complexes using the RDE-3 protein revealed that both predictions are in good agreement (Fig. 
4B and Movie S33). We next considered two proteins, FBXB-97 and PIRE-4, for which multiple 
interactors were predicted by AlphaFold 2 with varying confidence. While AlphaFold 2 predicted 
interactions between PIRE-4 and 3 RNA regulators (ranking = 0.73, 0.70, and 0.61), and between 
FBXB-97 and 7 RNA regulators (ranking = 0.66, 0.67, 0.75, 0.78, 0.75, 0.77, and 0.76), AlphaFold 
3 only predicted an interaction with RDE-3 for both proteins (Fig. 4C, ranking = 0.78 and 0.79). 
The RDE-3-interacting residues of FBXB-97 predicted by both approaches overlapped but those 
of PIRE-4 did not (Fig. 4C). Furthermore, aligning the predicted protein-protein complexes using 
RDE-3 showed a large discrepancy in the positions of the interacting partners in both cases (Fig. 
4D, FBXB-97, left; PIRE-4, right; and Movies S34 and S35). Similarly, comparing the predictions 
for interactions between EGO-1 and W09B7.1 also revealed large discrepancies (Fig. 4E and 
Movie S36).  While a region of interaction was predicted using AlphaFold 3 with PAE <5Å and 
distance <6Å (Fig. 4E, right), regions of interaction were only detectable using AlphaFold 2 when 
the maximal PAE allowed was increased to 10 (Fig. 4E, left). Even at this lower threshold for error, 
the predicted interacting regions differed between the two approaches (black ovals in Fig. 4E).   

The reasons for the differences between predictions by AlphaFold 2 and AlphaFold 3 
could be varied. For example, differences in sampling of predictions, which is expected to 
correlate with success rate (37) (25 models per AlphaFold 2 run versus five per AlphaFold 3 run 
on the server) and/or differences in handling intrinsically disordered regions, for which structures 
can be identified by AlphaFold 2 if they conditionally fold (38). Modifications to these algorithms 
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that extend capabilities continue to be developed (e.g., modeling of interacting interfaces within 
intrinsically disordered regions (39), predicting multiple conformations (40), and predicting large 
protein assemblies (41)). Therefore, further comparisons as newer algorithms for predicting 
protein-protein interactions continue to be developed (e.g. (42)) and customized exploration of 
criteria for interactions (43) may be useful for determining when each algorithm can aid the 
generation of hypotheses.  

Convergence and rarity of models support the use of flexible criteria for initial screens. 

 The RNH-1.3:RDE-3 complex is supported by relatively high-confidence models predicted 
using AF 2 and AF 3 (Fig. 4A and 4B), rnh-1.3 RNA accumulates in rde-3(-) animals (44,45), and 
both rnh-1.3 and rde-3 were featured in the abstract of an early publication (46). Therefore, we 
examined the predicted interactions between RNH-1.3 and RDE-3 in detail to refine the criteria 
for identifying candidate interactors and to analyze the potential reasons for differences between 
predictions by AF 2 and AF 3.  

 While the high-confidence model of the RNH-1.3:RDE-3 complex by AF 2 had a ranking 
score of 0.85, all the other 24 models from the run had much lower scores (Fig. 5A). In fact, the 
highest-ranking score in 17 subsequent runs was only 0.51. This rarity of high-scoring models 
suggests that multiple runs may be required on the AlphaFold 3 server as well to discover the 
high scoring models. Consistently, only one of 5 new runs of AF 3 resulted in a high-scoring model 
(Fig. 5B). Interestingly, an overlay of models with the top two ranks showed a highly similar 
structure both in the case of AF 2 and AF 3 predictions despite the large differences in their scores 
(0.85 vs. 0.51 for AF 2 and 0.74 vs. 0.35 for AF 3 in Fig. 5C; and Movies S37 and S38). This 
observation suggests that for some protein complexes, the models predicted with relatively low 
ranking scores could nevertheless be close to the highest-scoring model. To systematically 
analyze the convergence of the models with ranking scores, we overlayed the highest scoring 
models from the 18 runs of AF 2 and calculated the root mean square deviation (RMSD) of each 
model from the highest-scoring one (Fig. 5D). Scores as low as ~0.4 resulted in models that were 
within ~4Å RMSD of the highest-scoring model. However, scores below that (red line in Fig. 5D) 
were associated with models that could either have a low (e.g., < 10Å) or high (e.g., > 20Å) RMSD 
compared with the highest-scoring model. These analyses suggest that models with a ranking 
score of 0.4 could be worth exploring further, although we have preserved the more conservative 
threshold of 0.6 in all subsequent analyses using AlphaFold 2. To make the contributions of the 
two interacting proteins symmetric, we propose that the product of the number of constrained 
residues in the bait (nbait) and that in the prey (nprey) be greater than 100. Using these revised 
criteria, we re-examined all AF 2 predictions (Fig. S3) and found that all 32 previously predicted 
interactions (Fig. 2B) were preserved, and an additional 10 interactions were predicted as 
significant (Fig. S3). These additional interactions (Movies S39 to S48) include those of two RNA 
regulators with R06C1.4 (designated PIRE-6), two RNA regulators with C38D9.2 (designated 
PIRE-7), and one RNA regulator with T16G12.4 (designated PIRE-8).  

 Taken together, these analyses suggest heuristics for managing false negatives. Since 
high-scoring models can be rare (1 in 450 AF 2 models with a score > 0.6 for RNH-1.3:RDE-3) 
and therefore require many runs to discover, false negative rate can be set based on available 
computational resources. Given the early convergence of some models with increasing ranking 
score (a model with ~0.4 ranking score only had an RMSD of ~4Å compared with the highest 
scoring model for RNH-1.3:RDE-3), reducing the ranking threshold could lead to the discovery of 
interactors within fewer runs. In contrast, false positives are difficult to estimate or manage 
because we would need a set of proteins that would not interact with each other under any 
circumstance – such an idealized set may not exist.  
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Pseudogenes among the top 25 genes could encode proteins that interact with some RNA 
regulators. 

Since pseudogenes could have the potential to encode peptides, we checked for this 
possibility in the four identified among the top 25 genes. Examination of all possible reading 
frames revealed uninterrupted stretches that could code for peptides for each ‘pseudogene’ 
(F09E9.7 - 141 aa, W04B5.1 - 85 aa, W04B5.2 - 144 aa, and ZK402.3 - 158 aa). These peptides 
if expressed have the potential to interact with some of the known RNA regulators tested (6 of 80 
possible interactions in Fig. S4; Movies S49 to S54). These could reflect interactions between 
peptides from these ‘pseudogenes’ or from the corresponding coding genes. In support of this 
idea, the STAU-1-like peptide that could be encoded by the ‘pseudogene’ F39E9.7 and the 
dsRNA-binding protein STAU-1 (47) are both predicted to interact with ADR-2, CSR-1, and RDE-
8 (Fig. S4; Movies S55 to S60). These results highlight the possibility that genes annotated as 
non-coding RNAs, or pseudogenes could have a role encoding a regulatory peptide.  

Multiple predicted interactors of RDE-3 suggest regulated production of poly-UG RNAs. 

Currently, information on the interactors of any protein in C. elegans is curated at 
WormBase (5) and the Alliance of Genome Resources (48) websites. We selected the poly-UG 
polymerase RDE-3, which catalyzes the production of a key intermediate of RNA silencing called 
poly-UG RNAs (45,49,50), as a case study to examine the value added by analysis using 
AlphaFold, if any. The websites list 5 physical interactors of RDE-3 identified through experiments 
reported in multiple publications (MUT-7(51), MUT-16(52), PIK-1(53), PRG-1(54), and RDE-
8(55)). Including these putative direct interactors, we tested the interaction of 22 regulators of 
RNA silencing and found significant interactions with 12 proteins using AF 2 (Fig. 6A; Movies S61 
to S72). Subsets of proteins appear to constrain different sets of residues on RDE-3 (Fig. 6B), 
suggesting different consequences on RDE-3 activity upon interaction for different groups of 
proteins. Taken together with the previously discovered interactions, a total of 19 interactors are 
predicted for RDE-3 by AF 2 (Fig. 6C). Of these, only 6 interactors were also identified by AF 3 
when searched using 5 different random seeds (Fig. 6C). Of these 6, only three identified the 
same interaction interface (RNH-1.3, PIRE-2, and PIRE-6). Of the previously known and 
experimentally supported physical interactors, three were identified by AF 2 but not by AF 3 (MUT-
16, PIK-1, and RDE-8). Two others (MUT-7 and PRG-1) could not be identified by AF 2 even after 
five different runs (i.e, among 125 models), suggesting that these are either indirect interactors or 
require additional multimerization for complex formation. The extensive regulation of RDE-3 
suggested by these predicted interactions is consistent with recent experimental results that have 
revealed differences in the patterns of poly-UG RNAs detected when a germline (45) or somatic  
gene (20) is targeted by dsRNA, and the diversity of poly-UG patterns associated with different 
forms of heritable RNA silencing (56).  

Predictions after an immunoprecipitation could identify direct links to other processes. 

Interactions identified using immunoprecipitation followed by mass spectrometry are likely 
to be strong interactions with abundant proteins but can be direct or indirect. Immunoprecipitation 
experiments can also result in large lists of putative interacting proteins (e.g., 365 for CSR-1 in 
one study (54)), which can make it challenging to prioritize the interactors for further study. 
Examining candidate interactors using AlphaFold is potentially a way to distinguish direct 
interactors from indirect interactors or spurious co-precipitates.  

To test this possibility, we chose a relatively selective immunoprecipitation experiment that 
identified 12 putative interactors of the Z-granule surface protein PID-2 (36). Of this dozen, 11 
were ~1000 aa or smaller and therefore amenable to testing using AF 2 with reasonable 
computational resources. Five were identified as significant interactors with the following ranking 
scores: PID-5 – 0.63, PID-4 – 0.63, KIN-19 – 0.74, PAR-5 – 0.74, and T07C4.3 – 0.53 (Fig. S5A; 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2024. ; https://doi.org/10.1101/2024.05.01.592119doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.01.592119
http://creativecommons.org/licenses/by-nc-nd/4.0/


Movies S73 to S77). Even considering only the 4 proteins that satisfy the more stringent criterion 
of >0.6 ranking score, this analysis provides useful information. First, it identifies PID-3 and PID-
4 as direct interactors in agreement with further experimental evidence provided in the study (36) 
and predicts the sets of residues constrained by the interactions (Fig. S5B), which can be tested 
using additional experiments. Second, it suggests that KIN-19 and PAR-5 are additional direct 
interactors. KIN-19 is an ortholog of Casein kinase and was recently shown to phosphorylate the 
Argonaute ALG-1 (57). The predicted interaction with PID-2 suggests a wider role for this kinase 
in the regulation of RNA silencing, potentially through the phosphorylation of PID-2 or other 
substrates localized near Z granules. PAR-5 is a 14-3-3 protein required for the proper partitioning 
of cytoplasmic components in the early embryo (58). Furthermore, PAR-5 does not show a 
significant interaction with 19 other tested regulators of RNA silencing after one AF 2 run (Fig. 
7A), is frequently identified as interacting with PID-2 by AF 2 (Fig. 7B), and has an extensive 
interaction interface (Fig. 7C) that constrains the C-terminal 17 amino acids of PID-2 (Fig. 7D). 
Underscoring the high confidence in this interaction, the same interaction is also predicted by AF 
3 (Fig. 7E and Movie S78) and the RGFS450ECP sequence within the interaction domain is close 
to a consensus (RxxpSxP) for binding 14-3-3 domains (59) with S450 phosphorylated by an 
atypical Protein Kinase C (60). Nevertheless, determining if, when, and where any predicted 
interactions occur in vivo will require many future experiments.  

Some predicted interactions could be challenging to demonstrate experimentally.  

Obtaining experimental support for direct interactions between proteins can be difficult. 

For example, an interaction between the most abundant G protein in the brain (G (61), GOA-
1 in C. elegans) and the diacylglycerol kinase DGK-1 is strongly predicted by genetic analysis 
(62,63). Both AF 2 and AF 3 predict the same extensive binding between GOA-1 and DGK-1 (Fig. 
S6 and Movie S79). Furthermore, the interaction interface is largely preserved and reliably 
predicted by AlphaFold 3 when GOA-1 is by itself or bound to either GTP or GDP (Fig. S6 and 
Movie S79). Yet, early attempts using purified proteins failed to reveal a detectable interaction 
between DGK-1 and GOA-1 in vitro (64), and this interaction has remained a conjecture for more 
than two decades.  

While biochemical approaches rely on preserving or recreating in vitro the unknown 
conditions in vivo to coax a detectable interaction between proteins, prediction algorithms that 
incorporate extensive multiple sequence alignments (e.g., AF 2 and to an unknown extent AF 3) 
can use the co-evolution of residues to deduce the interaction. Given these complementary 
strengths, systematic analyses using both multiple experimental approaches (1) and multiple 
prediction algorithms are needed to find the edge of predictability for protein-protein interactions. 

The top 100 genes include many that could link RNA silencing to other processes. 

To examine if the observations above would hold when analyzing a larger set of genes, 
we examined the top 100 genes ordered according to their 𝑟100 values. To quantify the correlated 

presence or absence of genes in different lists we used a measure of mutual information (7) 
named here as historical mutual information (HMI) to emphasize the subjective nature of this 
measure because it depends on both functional relatedness of the genes and biased availability 
or inclusion of data (see supplementary methods and the 6_HMI_explorer.py program for 
exploring clusters of genes interactively). Using HMI to cluster these genes revealed three major 
clusters (64, 20, and 14 genes) and two other unconnected genes (Fig. 8A, Table S2) when 
communities are formed with a threshold distance (1- HMI) of 0.9 or less for a link between two 
genes.  

Only one cluster (cluster 1 in Fig. 8A) had significant numbers of genes associated with 
gene ontology terms (Table S3). These genes encode proteins involved in RNA silencing and/or 
play roles in other processes such as cell division and germ cell development. Consistently, this 
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cluster also had the greatest number of genes that have been described in multiple publications 
(Fig. 8B), including all the genes that have been featured in abstracts on RNA silencing (Fig. 8C). 
Therefore, the analysis of additional genes in this cluster could be relevant for RNA silencing and 
connect it to other processes (e.g., the cell cycle). Several predicted interactions are consistent 
with this speculation. One, among the other genes in cluster 1 is the gene encoding PAR-5, which 
is predicted to selectively interact with the known regulator of RNA silencing PID-2 (Fig. 7). The 
predicted interaction could have a role in segregating PID-2, and potentially other components of 
Z-granules, to the posterior side before the first cell division during embryonic development (58). 
Two, cluster 1 also includes the gene encoding MCM-7, which is predicted to selectively interact 
with CSR-1 (ranking score 0.59 in Fig. 8F; also see Fig. S7 and Movie S80). This interaction is 
also supported by an immunoprecipitation experiment (54) and it could have a role in the 
chromosome segregation function of CSR-1 (65) because of the established role of the MCM 
complex in DNA replication (66). Three, two other proteins encoded by genes in this cluster that 
were also tested (CEY-2 and PAN-1) are predicted to interact with some RNA regulators (8 of 40 
potential interactions tested in Fig. 8F; also see Fig. S7 and Movies S81 to S88). 

Since six of the eight pseudogenes are in a small cluster (Fig. 8E, 6 of 14 genes in cluster 
2), the other genes in this cluster could potentially be targets of regulation without specific 
downstream regulation or be co-regulated sensors of pseudogene RNA levels. Two PIRE proteins 
(PIRE-3/E01G4.5 and PIRE-5/K02E2.6) are also present in this cluster. Another gene Y47H10A.5 
encodes a protein with similarity to decapping nuclease (Foldseek, E-value < 0.05) and is targeted 
by miR-243 (67), leading to RDE-1-dependent small RNA production (67,68). Since, the 
Y47H10A.5 protein is predicted to interact with multiple regulators of RNA silencing (Fig. 8F, Table 
S2, Fig. S7, and Movies S89 to S93), we refer to it as PIRE-9. 

There is a large overlap between a set of genes that require HRDE-1 for downregulation 
(67 genes in both replicates from worms grown at 15ºC (69)) and genes in a single cluster (Fig. 
8F, 20 of 64 genes in cluster 3). One possible explanation for this abundance and clustering could 
be that hrde-1-dependent gene lists are among the most numerous generated by the field and/or 
included in our analysis (42 of 398 lists). Alternatively, genes that are subject to HRDE-1-
dependent silencing could be extensively regulated by many other regulators and require this 
additional downregulation for fitness – i.e., overexpression of these genes is detrimental. 
Consistent with this possibility, loss of HRDE-1 results in progressive sterility that can be reversed 
by restoring HRDE-1 activity (69). Also, as expected for the use of HRDE-1 downstream of SID-
1, genes upregulated using sid-1 (18 genes in animals lacking sid-1 (16)) overlap with genes in 
the same cluster (Fig. 8F and Table S2, 4 of 64 in cluster 3).  

In addition to these hypotheses, how interacting with PIRE proteins modulates the 
functions of known regulators of RNA silencing could be experimentally tested (Table S3). Future 
studies by labs working on multiple aspects of RNA silencing in C. elegans have the potential to 
test and enrich the classification of the regulated yet understudied genes revealed here, including 
by identifying many more PIRE proteins. 

Discussion 

Our analysis has identified selectively regulated yet understudied genes in the field of RNA 
silencing in C. elegans, some of which encode predicted influencers of RNA-regulated expression 
that act through protein-protein interactions. To facilitate easy inspection of all the predicted 
interactions identified in this study, we generated a network diagram (Fig. 8G) that summarizes 
the 77 predicted interactions among 42 interactors with varying amounts of support. Minimally, all 
interactions shown are predicted by AlphaFold 2.3. A survey of the information available on 
WormBase for all 42 interactors revealed that 8 of these interactions are already supported by 
some experimental evidence for physical interaction. We note that this is not an exhaustive list of 
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all possible interactions even among the 42 interactors considered and expect that future 
experimental work will refine this view. 

The inevitable bias of progress. Bias during progress in a field is unavoidable and its 
causes are complex, including availability of technology, researcher pre-disposition, perceived 
importance of a direction, current societal need, etc. Therefore, the comprehensive appraisal of 
a field through equal representation of all important aspects is impractical. Indeed, our analysis 
involved the manual collation of many datasets for comparison, which could have resulted in 
omissions and inclusions that spark disagreements. While future extensions of this work could 
automate the process of aggregating and comparing data, flexible inclusion of different lists in the 
analysis would be needed to enable customization based on the expertise, interests, and risk 
tolerance of individual labs. Furthermore, earlier studies using older technologies could have led 
to conclusions that need revision. For example, when analyzed using multi-copy transgenes, the 
dsRNA-binding protein RDE-4 showed a cell non-autonomous effect (70,71), but when analyzed 
using single-copy transgenes, RDE-4 showed a cell autonomous effect (72). Since different 
researchers could interpret such conflicting data differently (e.g., differences in levels of tissue-
restricted expression versus differences in extent of misexpression in other tissues), it is useful to 
preserve the ability to customize lists. With the expanding number of lists generated by large-
scale experimental approaches in different fields, identifying selectively regulated yet 
understudied genes could aid the prioritization of genes for detailed mechanistic studies using the 
limited resources and time available for any lab. 

Function(s) of the x-dependent gene. Different properties of a single protein or RNA 
could be important for different biological roles (73,74), or the same properties could be important 
for different processes. Despite such variety, a gene found in many lists could become associated 
with a single label because of the historical sequence of discovery (e.g., HRDE-1-dependent 
genes; many in cluster 3, Fig. 8E), thereby obscuring additional roles of that gene. Most of the 
PIRE proteins are predicted to interact with more than one tested regulator of RNA silencing (e.g., 
ten in Fig. S3). If these interactions are validated through experimental analyses, it will not be 
possible to classify these PIRE proteins into single pathways. Indeed it can be challenging to 
delineate pathways when multiple regulators in an intersecting network make quantitative 
contributions to an observed effect (20). The well-recognized difficulty in defining the function of 
a gene (75) is exacerbated in these cases, making it more appropriate to consider these proteins 
as entities within a system whose roles depend on context (see (76) for similar ideas). 

Metrics for historically contingent progress. Exhaustive collation of past progress can 
be difficult because of the many formats in which data and inferences are presented. Of these, 

tabular data are particularly amenable to future computation. The simple rg metric provides a 
weighted sum of frequently occurring features (e.g., genes) for prioritizing the top 25 genes (Fig. 

1) or 100 genes (Fig. 8). However, the number of genes considered for calculating rg can influence 
the prioritized set obtained (Table S4). Specifically, the same genes were identified as the top 25 

genes by considering 1000 genes (1000th r1000 gene being present in 53 lists) or 100 genes (100th 

r100 gene being present in 72 lists), and 16 of these genes were identified by considering 25 genes 

(25th r25 gene being present in 84 lists). More complicated metrics that consider other useful 
aspects of the data such as effect size (77) of the reported change (e.g., measured for fold-change 
when using RNA-seq), discoverability of the change using a technique (e.g., influenced by 
abundance of a protein for immunoprecipitation), and reliability of the technique used (e.g., 
adequacy of replicates for estimating noise) could be developed in the future to extract more 
information. Historical mutual information provides a measure of predictability that is an unknown 
mix of functional relatedness and biased attention, hence ‘historical’. This metric is simply a 
normalized measure of mutual information (78), which captures the predictability of one feature 
given knowledge about another feature and is widely used (79) because of the ability to capture 
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both correlations and anticorrelations without any knowledge of underlying causality. The 
tendency to progress by building upon past discoveries and to communicate by connecting to 
concepts of perceived importance makes the growth of knowledge akin to growth of networks 
through preferential attachment (see simulation in Movie S94). Metrics that take advantage of this 
aspect could be developed to reduce bias in the information (e.g., by weighting based on 
community size). However, separating features that appear to be important based on progress in 
a field from what is inherently important given the characteristics of a system can be challenging. 

From transcript changes to protein-protein interactions. Positive feedback loops that 
drive growth and development are a ubiquitous feature of life (80). Yet, living systems are also 
characterized by homeostasis (4), which needs negative feedback to suppress runaway 
processes. For example, in a chain of biochemical reactions, product inhibition (81) can be used 
to regulate production to match need. While this organization enables compensation in response 
to change, complete compensation for all processes is clearly not possible as evidenced by the 
fact that many mutations have measurable consequences. A specific case of this general principle 
is transcriptional adaptation, where the mutation-induced degradation of a transcript results in 
compensatory changes in the levels of other transcripts (82). The existence of PIRE proteins 
suggests that another way for organisms to compensate for the perturbation of a protein that 
regulates a process is to change the levels of other proteins that can regulate the same process 
through protein-protein interactions. Thus, we speculate that perturbing a protein could 
sometimes alter the mRNA levels of its interactors because of the prevalence of feedback 
regulation in living systems. If true, this feature of life provides a strategy for combining RNA 
sequencing and protein structure predictions to identify protein-protein interactions of regulatory 
importance. 
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Figures and Figure Legends 

 

Figure 1. Some genes are selectively regulated, reported as part of many lists, and yet are 
understudied. (A) Schematics of possible regulatory architectures for genes found on multiple 
lists. (top) Gene receiving one input form a large network. (bottom) Gene receiving multiple inputs 
from separable networks. (B) Strategy for the identification of regulated genes. See Methods for 
details. (C) Relationship between Si, Ti, and 𝑔 obtained using simulated data for an organism with 

20,000 genes. Distributions of the probabilities of having at least one overlapping gene within the 

selected gene set (P(Si > 0)) for 100 runs of each parameter combination are presented as box 
and whisker plots. (D) Numbers of publications listed on WormBase for the top 25 regulated genes 

ordered using r25 in the field of RNA silencing in C. elegans. Red line marks 10 publications. (E) 
Domains present in proteins encoded by understudied genes among the top 25 genes that are 
suggestive of function. Proteins with high-confidence AlphaFold structures (12) were used to 
identify similar proteins as detected by Foldseek (17) or based on the literature ((18); C38D9.2, 
F15D4.5, and W09B7.2). (F) Heatmap showing the top 25 regulated genes. Presence (black) or 
absence (white) of each gene in each dataset is indicated. Relatively understudied (<10 
references on WormBase) genes (red) or pseudogenes (grey) identified in (D) are indicated. (G) 
Hierarchical clustering of the top 25 genes based on co-occurrence in lists, where gene names 

colored as in (F) and ‘distance (dJ)’ indicates Jaccard distance. 
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Figure 2. Understudied regulated genes encode proteins predicted to interact with key 
regulators of RNA silencing. (A) Regulators of RNA silencing in different categories examined 
for predicted interactions with proteins encoded by understudied genes identified in this study. 
See text for details. (B) Predicted interactions between proteins encoded by top 25 genes ordered 
by their r25 scores and known regulators of RNA silencing in C. elegans. The area of the interaction 
surface between partners normalized by the product of the sizes of the interactors is shown as a 
bubble plot (inter-protein predicted aligned error <5Å and inter-residue distance <6Å). Interactions 
with a low ranking score (< 0.6) and/or that constrain fewer that 20 amino acids in proteins 
encoded by the understudied genes are indicated in grey. Also see Fig. S1 and Movies S1 to 
S32. (C) Proteins encoded by understudied genes with significant interactions are predicted to 
impact multiple steps in RNA silencing. (D) Predicted structures for the five newly named 
predicted influencers of RNA-regulated expression (PIRE) proteins are shown with the per-
residue confidence (pLDDT) as present in the AlphaFold protein database (83). 
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Figure 3. Predicted Influencer of RNA-regulated Expression (PIRE) proteins interact with 
regulators of RNA silencing in two general modes. (A) Predicted interactions between the 
PIRE proteins (magenta) FBXB-97 (left) and PIRE-3 (right) with the known regulator RDE-8 
(green) that are of high confidence (constraining more than 20 amino acid residues with an inter-

C distance less than 6Å and PAE less than 5Å) are indicated with pseudo bonds. (B) Regions 

of the PIRE protein sequence constrained by the interacting regulator. Markers (black, ranking 
score >0.6; grey, ranking score <0.6) are enlarged with respect to the X-axis for visibility (e.g., the 
marker denoting the interaction between RDE-1 and FBXB-97 only indicates one residue). 
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Figure 4. Interactions predicted by AlphaFold 2 and by the AlphaFold 3 server can differ. 
(A) Comparison of the top ranking interactions between known regulators of RNA silencing and 
the PIRE proteins predicted by AlphaFold 2 (AF 2 (11); 0.8*ipTM + 0.2*pTM) with the score 
generated by AlphaFold 3 (AF3 (13); 0.8*ipTM + 0.2*pTM + 0.5*disorder). A high-confidence 
prediction by both approaches is highlighted in bold. (B) Models for the interaction of RNH-1.3 
with RDE-3 generated by AF2 and AF3 overlayed using RDE-3. Also see Movie S33. (C) 
Comparison of residues of PIRE proteins constrained through interactions as predicted by AF2 
(black) or by AF3 (grey). (D) Comparison of interactions between FBXB-97 and RDE-3 (left), and 
between PIRE-4 and RDE-3 (right) as predicted by AF2 (black) and the AF3 server (grey), 
respectively. Structures are shown with differential coloring of each protein and overlayed using 
the RDE-3 structures in both cases. Also see Movies S34 and S35. (E) Interactions between 
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EGO-1 (magenta or red) and W09B7.1 (green or cyan) predicted by AF2 or AF3. Black ovals 
indicate interacting regions with inter-protein PAE <10Å (left) or <5Å (right). Also see Movie S36. 

 

Figure 5. High-ranking models can be rare, and models can converge early with increasing 
scores. (A) Distribution of ranking scores for the 25 models of RNH-1.3:RDE-3 generated by AF 
2. (B) Multiple runs with different random seeds and resulting scores for models of RNH-1.3:RDE-
3 generated by AF 3. (C) Overlay of models with the highest scores from two different runs 
showing similar interactions between RNH-1.3 (magenta or red) and RDE-3 (green or lime) 
predicted by both AF 2 and AF 3. Pseudobonds depicting the predicted aligned errors for the 
constrained residues are highlighted for both pairs of models. Also see Movie S37 and S38. (D) 
A range of scores can underlie nearly similar architectures of a predicted complex. The highest 
scoring model for RNH-1.3:RDE-3 from each of 18 AF 2 runs (different colors) were superimposed 
using RDE-3. Top, Superimposed models for low (less than 10Å) and high (more than 20Å) root 
mean square deviation (RMSD) values are shown. Bottom, Ranking scores are plotted after 
arranging models in increasing order of RMSD from the highest scoring model.  
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Figure 6. The poly-UG polymerase RDE-3 is predicted to interact with multiple proteins. (A) 
Predicted interactions of RDE-3 with known regulators of RNA silencing and the 5 proteins listed 
as physical interactors on WormBase (MUT-16, MUT-7, PIK-1, RDE-8, and PRG-1) identified by 
AlphaFold 2.3 are shown. Sizes of circles indicate normalized interaction area and shading 
indicates ranking score. Grey indicates ranking scores < 0.6 and/or the products of numbers of 
constrained residues in RDE-3 and its interactors (nbait x nprey) < 100. Also see Movies S61 to S72. 
(B) Regions of RDE-3 protein sequence constrained by the interacting regulators. Markers (black) 
are as in Fig. 3B. (C) Table summarizing interactors of RDE-3. Experimentally identified physical 
interactors (interactor on WormBase?), highest score of AF 2 predicted interactions that are > 0.6 
(25 models from 1 run), highest score among AF 3 predicted interactions (25 models from 5 runs), 
and whether the AF 2 and AF 3 structures are similar (convergence of AF 2 and AF 3?) are 
indicated. Scores of AF 3 models that lack any interactions between the two proteins with a 
predicted aligned error < 5Å and a distance < 6Å are indicated in grey.      
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Figure 7. PAR-5 is predicted to interact with the Z-granule surface protein PID-2/ZSP-1 but 
not with many other tested regulators of RNA silencing. (A) Predicted interactions of PAR-5 
with known regulators of RNA silencing identified by AlphaFold 2.3 are shown. Area of circles and 
shading are as in Fig. 6A. (B) Distribution of ranking scores for the 25 models of PAR-5:PID-2 
generated by AF 2. (C) Regions of PAR-5 protein sequence constrained by interactions with PID-
2. Markers (black) are as in Fig. 3B. (D) Structure of the C-terminus of PID-2 constrained by PAR-
5. (E) Overlay of models predicted by AF 2 and AF 3 superimposed using PAR-5 showing similar 
interactions between the C-terminus of PID-2 (lime or red) and PAR-5 (magenta or green) 
although the rest of the PID-2 protein are positioned differently in the two models. Pseudobonds 
are as in Fig. 3A. Also see Movie S78. 
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Figure 8. Clusters formed by understudied regulated genes suggest priorities for detailed 
study. (A to E) Properties of the top 100 regulated genes in the field of RNA silencing in C. 
elegans. (A) Clusters of genes based on their historical mutual information (HMI). Threshold for 
link: distance (1 - HMI) < 0.9. (B to E) Network in (A) with nodes colored to show number of 
publications per gene (white, 0; black, ≥100) (B), genes that have been the main subject of 

abstracts on RNA silencing in C. elegans (C), pseudogenes (red) (D), and genes changed in hrde-
1 mutants (69) (red), a sid-1 mutant (16) (cyan), or both (orange) (E). (F) Predicted interactions 

of proteins encoded by genes with different r100 ranks with known regulators of RNA silencing. 
Sizes of circles indicate normalized interaction area and shading indicates ranking score. Grey 
indicates ranking scores < 0.6 and/or the products of numbers of constrained residues (nbait x 
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nprey) < 100. Also see Movies S80 to Movie S93. (G) All interactions (connecting lines) depicted 
were identified by AF 2 (grey). Some are supported by experimental evidence for physical 
interaction (magenta) and some are also predicted by AF 3 with either similar (green) or different 
(cyan) interfaces. Known regulators of RNA silencing are in red and those used as baits to look 
for predicted interactors (STAU-1, PID-2, and RDE-3) are in bold. Also see Table S4. 
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Supplementary Methods 
 
Analysis of gene data tables. To identify studies on RNA silencing in C. elegans with data tables 
that can be compared across all studies, we used the term ‘C. elegans RNA silencing’ to search 
PubMed.  After examining the abstracts of more than 2000 studies that resulted from the search, 
the available data tables from 82 studies that were published between 2007 and 2022 were 
downloaded (Table S1), reformatted into 398 distinct tables manually and/or using custom scripts. 
Metadata if supplied by the authors for each table were retained as comments above each table. 
Gene names were unified using the Gene Name Sanitizer 
(https://wormbase.org/tools/mine/gene_sanitizer.cgi) as on 26 April 2022 (0_sanitization.py). It is 
unclear how an exhaustive list of papers that is nevertheless field-restricted could ever be defined 
for any field. Accordingly, our list of RNA silencing studies in C. elegans is not exhaustive and we 
apologize to colleagues whose work is not included in our analysis. Nevertheless, this effort 
captured additional datasets compared with those available in other more unrestricted collections 
that attempt to collect tables from all studies on an organism (e.g. WormExp 2.0 (1)). Only 30 of 
the 55 studies published before 2017 and included in this study overlapped with the 461 included 
in WormExp 2.0 as on 27 Jul 2017, which was available for download from the website 
(https://wormexp.zoologie.uni-kiel.de/wormexp/). This overlap was determined by comparing the 
paper IDs using a custom script (0_dataset_wormexp_overlap.ipynb). Data tables that reported 
p-values or adjusted p-values were filtered to only include entries with p < 0.05 (0_filter_pvals.py). 
Since fold-changes were not always available, for every dataset, genes were scored as present 
or absent (1_TableOccupancy.py) to generate a heatmap featuring the most frequently changed 

genes sorted by rg values, where the number of genes considered (g) can be arbitrary (e.g., 25 
in Fig. 1F and 100 in Fig. 8). The relationships between the parameters Si, Ti, and 𝑔 (Fig. 1C) 

were obtained using simulated data by sampling 100 random sets of genes (0_rg_simulation_box-
whisker.ipynb) as the top 𝑔 genes from a total of 20,000 genes and similarly sampling the genes 

in datasets of various sizes (Ti). For each gene in published lists in the field, the number of 
references listed on Wormbase (https://wormbase.org/) was used as a measure of the extent to 
which the gene has been studied (2_fig1D_r25_references.ipynb). Genes with fewer than 10 
references were defined as understudied (Fig. 1D). To generate the heatmap 
(3_fig1F_fig1G_r25_related.ipynb, 4_heatmaps_normalized_100_full.ipynb), genes were 
ordered by decreasing values of 𝑟25 (top to bottom in Fig. 1F) and datasets were ordered by 

decreasing values of 
𝑆𝑖

𝑇𝑖
. (left to right in Fig. 1F). To determine the co-occurrence patterns of all 

pairs of genes, Jaccard distances (𝑑𝐽 = 1 − 
|𝑋∩𝑌|

|𝑋∪𝑌|
, where X and Y are sets of lists containing genes 

x and y, respectively) were calculated for each pair and all genes were hierarchically clustered 
using the ‘average’ linkage method. Relationships between genes based on occurrence in 
datasets were also captured as normalized mutual information (5_sklearn_nmi.ipynb) and defined 
as historical mutual information (HMI) to emphasize the dependence on the biased availability or 
inclusion of data based on historical progress in addition to the functional relatedness of the 
genes. Specifically, it was defined to be a symmetric and normalized mutual information score (2) 
and was calculated using the function normalized_mutual_info_score from scikit-learn (3) for 
genes 𝑋 and 𝑌: 

𝐻𝑀𝐼(𝑋; 𝑌) ∶=
2. 𝑀𝐼(𝑋; 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
 , 

where 𝑀𝐼(𝑋; 𝑌) =  ∑ ∑ 𝑃(𝑋,𝑌)(𝑥, 𝑦)𝑥𝑦 𝑙𝑜𝑔2 (
𝑃(𝑋,𝑌)(𝑥,𝑦)

𝑃𝑋(𝑥)𝑃𝑌(𝑦)
), 𝐻(𝑋) =  − ∑ 𝑃(𝑥)𝑙𝑜𝑔2(𝑃(𝑥))𝑥 , and 𝐻(𝑌) =

 − ∑ 𝑃(𝑦)𝑙𝑜𝑔2(𝑃(𝑦))𝑦 . Mutual information (MI) determines how different the joint distribution of the 

gene pair (X, Y) is from the product of the marginal distributions of each gene, H(X) and H(Y) are 
the entropies of the two genes, and 𝑃(… ) indicates probabilities. Clusters of genes based on HMI 

https://wormbase.org/tools/mine/gene_sanitizer.cgi
https://wormexp.zoologie.uni-kiel.de/wormexp/
https://wormbase.org/tools/mine/gene_sanitizer.cgi


values were identified using the Girvan-Newman algorithm (4). An interactive graphical user 
interface (GUI) for visualizing clusters and genes of interest (6_HMI_explorer.py) was created 
using Dash (Python) and figures highlighting genes within the clusters were generated 
(7_fig8.ipynb). Gene Ontology (GO) analysis was performed on all clusters using the Gene 
Ontology Resource ((5,6); https://geneontology.org/). Tables of the top 25 genes ranked by 𝑟25 

when different numbers of total top genes are considered (Table S5) were generated for 
comparison (8_table_S5_r25_with_100_total.ipynb, 8_table_S5_r25_with_1000_total.ipynb). 
 
Analysis of predicted protein structures. Predicted protein-protein interactions were examined 
using Alphafold 2.3.2 and the Alphafold 3 server, downloaded to a local machine, and analyzed 
using ChimeraX and custom scripts. 
Alphafold 2. For each understudied regulated gene, files with protein sequences (.fasta) encoded 
by the longest transcript isoform were obtained from Wormbase and combined using the program 
‘fasta_assembly_for_alphafold_dimer.py’ to create paired fasta files to be used for testing the 
potential for an interaction between the two proteins. Batches of potential interactors prepared in 
this way were run on the high-performance computing cluster (Zaratan, UMD) using a batch 
submission script (‘alphafold_multimer_batch_submission.sh’) that modifies another script for 
submitting alphafold 2.3.2 jobs with the model_preset flag set to ‘multimer’ 
(‘alphafold_multimer.sh’). Typical resource requests included a wall time of 18 hours, one A100 
GPU, and 8 CPUs at 6 GB each. Upon completion, a script for reducing the results folder to keep 
only the highest-ranking model was run (‘alphafold_results_cleanup.sh’) before downloading from 
the HPCC to a local machine. To analyze and annotate the downloaded models, the 
‘alphafold2_dimer_batch_computed_on_zaratan.py’ program and run using the command 
‘chimerax --exit alphafold2_dimer_batch_computed_on_zaratan.py’, which runs the python 
program within ChimeraX-1.7.1. Data for all predicted interactions to be analyzed together were 
collected under the same file (‘yyyy_m_d_alphafold2_summary_stats’), where yyyy_m_d 
indicates date. This program also generated most of the supplemental movies. The program 
‘predicted_influencer_of_RNA_regulated_expression_d2.py’ was then run to extract information 
about the interactions and make plots with either absolute interaction areas or areas normalized 
based on the sizes of the interacting proteins (passed to the program through the files 
(‘yyyy_m_d_A_list_sizes’ and ‘yyyy_m_d_B_list_sizes’). Additional plots showing the residue 
numbers and locations of residues interacting with each regulator were created using the program 
‘interactor_map_for_a_protein_with_another_set_of_proteins.py’. The final figure showing the 
scaled area of interaction shaded according to the ranking score (Fig. 2B) was generated using 
‘final_interactors_filtered_by_model_rankings.py’. 
 Analysis of Alphafold 2 models using chimeraX and the downstream computations can 
also be performed using the two scripts ‘predicted_dimer_chimerax.py’ and 
‘predicted_dimer_python.py’. These streamlined scripts also generate distributions of the ranking 
scores for the 25 models identified with each run of Alphafold 2.   
Alphafold 3. Essentially the same workflow as above was used after downloading the predicted 
interactions for pairs of proteins from the Alphafold 3 server, which was run in batches of 10 or 20 
per day based on quota availability. Parsing the resulting data required some minor modifications 
to the programs because the error files (.json) and the structure files (.cif) were in different formats 
and labeled differently. The program ‘alphafold3_dimer_batch_computed_on_google.py’ was 
used for analyzing these predictions. 
Comparisons of Alphafold 2 and Alphafold 3. For comparisons of the two prediction approaches, 
the ‘alphafold3_dimer_batch_computed_on_google_comparing_af2_af3.py’, 
‘predicted_influencer_of_RNA_regulated_expression_d2_af2_vs_af3_af3_run.py’ and 
‘interactor_map_for_a_protein_with_another_set_of_proteins_comparing_af2_vs_af3_rerun_on
_af3.py’ programs were used.    

https://geneontology.org/


Illustrations. Illustrations of protein-protein complexes for figures were created manually using 
ChimeraX (1.7.1 or 1.8-rc2024.05.24) and Adobe Illustrator (28.5). Typical workflow on ChimeraX 
included opening the .pdb or .cif files and the associated predicted aligned error files (.json or 
.pkl), aligning them as necessary, coloring different proteins, overlaying multiple models when 
relevant, and adding inter-protein pseudobonds based on criteria before saving images and/or 
movies. All interactions predicted in the study were summarized using Gephi (v. 0.10.1 
202301172018) and Adobe Illustrator (v. 28.7.1).  

  



Supplementary Figures 
 

 
Figure S1. Numbers of candidate PIRE protein residues constrained by the predicted 
interacting regulator of RNA silencing in C. elegans. Numbers of residues that interact with 
an inter-protein PAE < 5Å and a distance between residues < 6Å are plotted for each interaction 
between a protein encoded by an understudied gene and a known regulator of RNA silencing in 
C. elegans. A threshold of 20 residues (blue line) and a ranking score >0.6 was used to separate 
candidate PIRE proteins (highlighted in bold) from others encoded by understudied genes.  



 
Figure S2. Regions of the candidate PIRE protein sequence constrained by the predicted 
interacting regulator of RNA silencing in C. elegans. Markers (black) are enlarged with respect 
to the X-axis for visibility (e.g., the marker denoting the interaction between RDE-1 and FBXB-97 
only indicates one residue). Understudied genes that encode candidate PIRE proteins are 
highlighted in bold.  



 
Figure S3. Predicted interactions between proteins encoded by the top 25 genes and 
known regulators of RNA silencing identified with more permissive criteria. (A) The area of 
the interaction surface between partners normalized by the product of the sizes of the interactors 
is shown as a bubble plot. Interactions are shaded according to ranking score.  Interactions for 
which the product of the numbers of interacting residues (nbait x nprey) with an inter-protein 
predicted aligned error < 5Å and inter-residue distance < 6Å in a model with a ranking score > 0.6 
is less than 100 are shaded grey. Ten interactions identified in addition to those found using 
criteria in Fig. 2B are highlighted with red circles. (B) Regions of the additionally identified proteins 
constrained by the interacting regulators (red circles in A) with markers depicted as in Fig. 3B. (C) 
Predicted structures for additional PIRE proteins with pLDDT as in Fig. 2D. Also see Movies S39 
to S48. 



 
Figure S4. Predicted interactions of potential peptides encoded by pseudogenes and a 
homologous protein with regulators of RNA silencing. (A) Interactions are depicted as in Fig. 
S3A. The proteins are labeled with their closest BLAST matches separated by an underscore 
(e.g., F39E9.7_STAU-1 indicates that the peptide that could be encoded by F39E9.7 shares 
homology with STAU-1). (B to D) Regions of the longest peptide sequences encoded by F39E9.7 
(B), W04B5.2 (C), and ZK402.3 (D) constrained by the interactors are shown with markers as in 
Fig. 3B. (E) Regions of STAU-1 protein sequence constrained by interacting regulators of RNA 
silencing are shown with markers as in Fig. 3B. Also see Movies S49 to S60. 



 
Figure S5. Predicted interactions between PID-2/ZSP-1 and proteins identified in a 
pulldown of PID-2 (as reported in (7)). (A) Interactions are depicted as in Fig. S3A. (B) Regions 
of the PID-2 protein sequence constrained by the interactors are shown with markers as in Fig. 
3B. Also see Movies S73 to S77. 
 

 



Figure S6. Interactions between the G alpha protein GOA-1 and the diacylglycerol kinase 
DGK-1 predicted by AlphaFold. (A) Interaction between GOA-1 (magenta) and DGK-1 (green) 
predicted by AlphaFold 2. (B) Overlay of the GOA-1::DGK-1 complex predicted by AlphaFold 2 
(cyan) with those predicted by the AlphaFold 3 server (green, magenta, and orange for free, GTP-
bound, and GDP-bound GOA-1, respectively). Also see Movie S79. 
 

 
Figure S7. A sampling of predicted interactions between regulators of RNA silencing and 
proteins encoded by the top 100 genes with varying r100 ranks. (A to F) Regions of the PAN-
1 (A), HIL-4 (B), MCM-7 (C), CEY-2 (D), Y47H10A.5 (E), and Y17D7B.4 (F) protein sequences 
constrained by the interactors are shown with markers as in Fig. 3B. Also see Movies S80 to S93. 
(G) Predicted structures for an additional PIRE protein with pLDDT as in Fig. 2D. Also see Fig. 
8F. 

 
  



Tables and Table Legends 
 
Table S1. Data tables used in this study. List of the 398 tables used along with links to the 82 
studies from which they were taken and a brief description of the data types. See excel file. 
Table S2. Top 100 genes grouped according to historical mutual information (HMI). List of 
genes within clusters formed by the top 100 genes with distance (1 – HMI) < 0.9. The two genes 
that are not part of any clusters are listed as singletons.  

Cluster 1 Cluster 2 Cluster 3 Singletons 

csr-1 F39F10.4 gpx-8 R03D7.2 

tbb-2 H09G03.1 F40D4.13 pyk-1 

hsp-1 W04B5.1 dyf-3  

cey-2 Y47H10A.5 C46G7.5  

pgl-3 Y17D7B.4 citk-1  

hrde-1 F39E9.7 Y57G11C.51 

mcm-7 ZK402.3 saeg-2  

klp-15 E01G4.5 F09C8.2  

par-5 W04B5.2 gly-13  

klp-7 W05H12.2 fbxb-97  

cdk-1 K02E2.6 Y20F4.4  

hil-4 Y37E11B.2 ZK973.8  

wago-1 Y105C5A.14 spch-1  

hsp-90 F55C9.3 Y57G7A.5  

cpg-1  pan-1  

rme-2  W09B7.1  

wago-4  elf-1  

tba-2  C38C3.3  

  T20F7.1  

  fkb-8  

  K05C4.9  

  F15D4.5  

  sea-2  

  F55B11.6  

  F41G4.7  

  T16G12.8  

  C30G12.1  

  saeg-1  

  rnh-1.3  

  Y53F4B.5  

  E02H9.3  

  his-24  

  ZK909.3  



  vet-6  

  C04G6.6  

  lin-15B  

  qdpr-1  

  W09B7.2  

  K09H9.7  

  T02G5.4  

  lido-18  

  T11F9.10  

  scrm-4  

  clp-6  

  C08F11.7  

  pdfr-1  

  F58H7.5  

  T16G12.4  

  C09G5.7  

  Y48G1BM.6  

  C18D4.6  

  ZK795.2  

  ceh-20  

  W05F2.4  

  bath-13  

  timm-17B.2  

  fbxa-192  

  R03H10.6  

  bath-45  

  C55C3.3  

  R06C1.4  

  C38D9.2  

  T03D3.5  

  glit-1  

  mif-2  

  spe-41  
 
Table S3. Gene Ontology terms associated with genes in Cluster 1 among the top 100 
genes clustered using historical mutual information. 
 

GO term  # in set # identified # expected Enrichment P value 

regulation of biological 
process 

4202 13 4.03 3.23 3.20E-02 

developmental process 1846 10 1.77 5.65 5.10E-03 



cellular component 
organization 

1830 10 1.75 5.7 4.70E-03 

cellular component 
organization or 
biogenesis 

1982 10 1.9 5.26 9.78E-03 

anatomical structure 
development 

1696 9 1.63 5.54 2.55E-02 

regulation of 
macromolecule 
metabolic process 

1646 9 1.58 5.71 1.99E-02 

regulation of metabolic 
process 

1745 9 1.67 5.38 3.22E-02 

cell cycle process 400 9 0.38 23.48 9.93E-08 

cell cycle 517 9 0.5 18.16 9.66E-07 

negative regulation of 
biological process 

962 8 0.92 8.68 3.55E-03 

reproductive process 803 8 0.77 10.4 9.01E-04 

sexual reproduction 425 8 0.41 19.64 6.51E-06 

cell differentiation 824 8 0.79 10.13 1.10E-03 

cellular developmental 
process 

826 8 0.79 10.11 1.12E-03 

mitotic cell cycle 269 8 0.26 31.03 1.74E-07 

organelle organization 1091 8 1.05 7.65 9.11E-03 

negative regulation of 
cellular process 

854 7 0.82 8.55 2.18E-02 

mitotic cell cycle process 233 7 0.22 31.35 3.21E-06 

embryo development 516 7 0.49 14.16 7.57E-04 

regulation of cell cycle 245 6 0.23 25.55 2.01E-04 

multicellular organismal 
reproductive process 

384 6 0.37 16.3 2.82E-03 

regulation of cell cycle 
process 

185 5 0.18 28.2 1.78E-03 

gamete generation 254 5 0.24 20.54 8.45E-03 

germ cell development 176 5 0.17 29.64 1.39E-03 

cellular process involved 
in reproduction in 
multicellular organism 

178 5 0.17 29.31 1.47E-03 

microtubule cytoskeleton 
organization 

202 5 0.19 25.83 2.74E-03 

microtubule-based 
process 

281 5 0.27 18.57 1.38E-02 

embryo development 
ending in birth or egg 
hatching 

303 5 0.29 17.22 2.00E-02 

regulatory ncRNA-
mediated gene silencing 

109 4 0.1 38.29 7.97E-03 

regulation of mitotic cell 
cycle 

94 4 0.09 44.4 4.41E-03 



oogenesis 117 4 0.11 35.67 1.06E-02 

female gamete 
generation 

144 4 0.14 28.99 2.41E-02 

nuclear chromosome 
segregation 

121 4 0.12 34.49 1.21E-02 

chromosome segregation 155 4 0.15 26.93 3.22E-02 

nuclear division 166 4 0.16 25.14 4.22E-02 

 
Table S4. Potential hypotheses for the function(s) of PIRE proteins without common 
names. Function(s) of the known regulators of RNA silencing could be promoted or inhibited by 
interacting PIRE proteins. 
 

PIRE Interactor Known function(s) of RNA regulator(s) 

PIRE-1/ 
Y20F4.4 

ADR-2 
HRDE-1 

A-to-I editing of dsRNA (double-stranded RNA) (8) 
Argonaute activity (9) 

PIRE-2/ 
C08F11.7 

ADR-2 
CSR-1 
RDE-3 
SET-25 

A-to-I editing of dsRNA (double-stranded RNA) (8) 
Argonaute activity (10)  
poly-UG RNA production (11,12) 
histone methyltransferase activity (13,14) 

PIRE-3/ 
E01G4.5 

DEPS-1 
RDE-3 
PGL-1 
MUT-7 
SET-25 

germ granule formation and/or RNA silencing (15) 
poly-UG RNA production (11,12) 
mRNA regulation and/or P granule formation (16)  
3’-5’ exoribonuclease activity (17) 
histone methyltransferase activity (13,14) 

PIRE-4/ 
F15D4.5 

DEPS-1 
HRDE-1 
PRG-1 
RDE-8 
RDE-3 

germ granule formation and/or RNA silencing (15) 
Argonaute activity (9) 
Argonaute activity (18) 
RNA endonuclease and/or mRNA binding activity (19) 
poly-UG RNA production (11,12) 

PIRE-5/ 
K02E2.6 

ERI-1 
PID-2 
RDE-8 
SET-25 

3’-5’ exoribonuclease activity (20) 
piRNA-mediated silencing and/or Z-granule formation (7) 
RNA endonuclease and/or mRNA binding activity (19) 
histone methyltransferase activity (13,14) 

PIRE-6/ 
R06C1.4 

RDE-3 
PRG-1 

poly-UG RNA production (11,12) 
Argonaute activity (18) 

PIRE-7/ 
C38D9.2 

RDE-1 
PRG-1 

Argonaute activity (21,22) 
Argonaute activity (18) 

PIRE-8/ 
T16G12.4 

CSR-1 
 

Argonaute activity (10)  

PIRE-9/ 
Y47H10A.5 

ADR-2 
ERI-1 
PID-2 
MUT-16 
SET-25 

A-to-I editing of dsRNA (8) 
3’-5’ exoribonuclease activity (20) 
piRNA-mediated silencing and/or Z-granule formation (7) 
secondary small RNA production and mutator foci formation (23) 
histone methyltransferase activity (13,14) 

 

Table S5. rg rank order of frequently identified genes. Top 25 rank-ordered genes obtained 

by calculating rg using 25, 100, or 1000 of the most frequently listed genes among the 398 
tables considered in this study. In bold are genes shared with the top 25 identified using the 
most frequent 1000 genes.  



r25 genes r100 genes  r1000 genes  

C55C3.3 0.0164 C55C3.3 0.0164 C55C3.3 0.0164 

timm-17B.2 0.0149 timm-17B.2 0.0149 timm-17B.2 0.0149 

Y20F4.4 0.0135 Y20F4.4 0.0135 Y20F4.4 0.0135 

C08F11.7 0.0125 C08F11.7 0.0125 C08F11.7 0.0125 

E01G4.5 0.0120 E01G4.5 0.0120 E01G4.5 0.0120 

ZK402.3 0.0119 ZK402.3 0.0119 ZK402.3 0.0119 

C09G5.7 0.0118 C09G5.7 0.0118 C09G5.7 0.0118 

hrde-1 0.0117 hrde-1 0.0117 hrde-1 0.0117 

C18D4.6 0.0117 C18D4.6 0.0117 C18D4.6 0.0117 

R06C1.4 0.0116 R06C1.4 0.0116 R06C1.4 0.0116 

C38D9.2 0.0115 C38D9.2 0.0115 C38D9.2 0.0115 

F15D4.5 0.0115 F15D4.5 0.0115 F15D4.5 0.0115 

T16G12.4 0.0109 Y57G11C.51 0.0112 Y57G11C.51 0.0112 

fbxb-97 0.0107 pan-1 0.0111 pan-1 0.0111 

W04B5.1 0.0103 hil-4 0.0111 hil-4 0.0111 

spe-41 0.0102 cdk-1 0.0111 cdk-1 0.0111 

scrm-4 0.0098 T16G12.4 0.0109 T16G12.4 0.0109 

F39E9.7 0.0098 fbxb-97 0.0107 fbxb-97 0.0107 

K02E2.6 0.0097 F39F10.4 0.0106 F39F10.4 0.0106 

W04B5.2 0.0096 K09H9.7 0.0106 K09H9.7 0.0106 

rnh-1.3 0.0095 tbb-2 0.0105 tbb-2 0.0105 

bath-45 0.0094 saeg-1 0.0105 saeg-1 0.0105 

F58H7.5 0.0084 W04B5.1 0.0103 W04B5.1 0.0103 

SDG-1 0.0062 spe-41 0.0102 spe-41 0.0102 

W09B7.1 0.0032 csr-1 0.0101 csr-1 0.0101 

 
 
Supplementary Movie Legends 
 
Movie S1. TIMM-17B.2 and ADR-2 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S2. TIMM-17B.2 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S3. TIMM-17B.2 and RDE-8 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S4. TIMM-17B.2 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S5. Y20F4.4 and HRDE-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S6. C08F11.7 and ADR-2 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S7. C08F11.7 and CSR-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S8. C08F11.7 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S9. C08F11.7 and SET-25 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S10. E01G4.5 and PGL-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S11. E01G4.5 and MUT-7 with inter-protein predicted aligned error < 5 and distance < 6  



Movie S12. E01G4.5 and SET-25 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S13. F15D4.5 and DEPS-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S14. F15D4.5 and RDE-8 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S15. F15D4.5 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S16. FBXB-97 and RDE-4 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S17. FBXB-97 and ERI-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S18. FBXB-97 and NRDE-3 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S19. FBXB-97 and DEPS-1 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S20. FBXB-97 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S21. FBXB-97 and RDE-8 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S22. FBXB-97 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S23. K02E2.6 and ERI-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S24. K02E2.6 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S25. K02E2.6 and RDE-8 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S26. K02E2.6 and SET-25 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S27. RNH-1.3 and RDE-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S28. RNH-1.3 and HRDE-2 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S29. RNH-1.3 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S30. RNH-1.3 and SET-25 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S31. SDG-1 and ADR-2 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S32. SDG-1 and RDE-8 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S33. RNH-1.3 and RDE-3 predicted by AlphaFold 2 versus the AlphaFold 3 server  
Movie S34. FBXB-97 and RDE-3 predicted by AlphaFold 2 versus the AlphaFold 3 server  
Movie S35. PIRE-4 and RDE-3 predicted by AlphaFold 2 versus the AlphaFold 3 server  
Movie S36. EGO-1 and W09B7.1 predicted by AlphaFold 2 versus the AlphaFold 3 server 
Movie S37. Overlay of two models for the RNH-1.3:RDE-3 complex predicted by AlphaFold 2. 
Movie S38. Overlay of two models for the RNH-1.3:RDE-3 complex predicted by AlphaFold 3. 
Movie S39. PIRE-1 and RDE-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S40. DEPS-1 and PIRE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S41. RDE-3 and PIRE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S42. R06C1.4 and PRG-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S43. R06C1.4 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S44. C38D9.2 and RDE-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S45. C38D9.2 and PRG-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S46. PRG-1 and PIRE-4 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S47. HRDE-1 and PIRE-4 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S48. T16G12.4 and CSR-1 with inter-protein predicted aligned error < 5 and distance < 
6. 
Movie S49. ADR-2 and the longest peptide that could be encoded by F39E9.7 with inter-protein 
predicted aligned error < 5 and distance < 6. 
Movie S50. CSR-1 and the longest peptide that could be encoded by F39E9.7 with inter-protein 
predicted aligned error < 5 and distance < 6. 
Movie S51. RDE-8 and the longest peptide that could be encoded by F39E9.7 with inter-protein 
predicted aligned error < 5 and distance < 6. 
Movie S52. PRG-1 and the longest peptide that could be encoded by W04B5.2 with inter-
protein predicted aligned error < 5 and distance < 6. 
Movie S53. RDE-8 and the longest peptide that could be encoded by W04B5.2 with inter-
protein predicted aligned error < 5 and distance < 6. 



Movie S54. ADR-2 and the longest peptide that could be encoded by ZK402.3 with inter-protein 
predicted aligned error < 5 and distance < 6. 
Movie S55. ADR-2 and STAU-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S56. RDE-1 and STAU-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S57. PRG-1 and STAU-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S58. ALG-2 and STAU-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S59. CSR-1 and STAU-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S60. RDE-8 and STAU-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S61. ADR-2 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S62. CSR-1 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S63. DEPS-1 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S64. ERGO-1 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S65. MUT-16 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S66. NRDE-3 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S67. PID-2 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S68. PIK-1 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S69. PIR-1 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S70. RDE-4 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S71. RDE-8 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S72. RDE-10 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S73. PID-5 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S74. PID-4 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S75. KIN-19 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S76. PAR-5 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S77. T07C4.3 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S78. Overlay of models for the PAR-5:PID-2 complex predicted by AlphaFold 2 and 
AlphaFold 3. 
Movie S79. Overlay of models for the GOA-1:DGK-1 complexes predicted by AlphaFold 2 and 
AlphaFold 3. 
Movie S80. CSR-1 and MCM-7 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S81. ADR-2 and PAN-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S82. ERI-1 and PAN-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S83. HRDE-1 and PAN-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S84. HRDE-2 and PAN-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S85. MUT-7 and PAN-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S86. RDE-1 and CEY-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S87. RDE-8 and CEY-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S88. RDE-3 and CEY-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S89. Y47H10A.5 and ADR-2 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S90. Y47H10A.5 and ERI-1 with inter-protein predicted aligned error < 5 and distance < 
6. 
Movie S91. Y47H10A.5 and MUT-16 with inter-protein predicted aligned error < 5 and distance 
< 6  
Movie S92. Y47H10A.5 and PID-2 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S93. Y47H10A.5 and SET-25 with inter-protein predicted aligned error < 5 and distance 
< 6  
Movie S94. Simulation illustrating the growth of networks through preferential attachment 
(Screen capture of ‘Preferential Attachment Simple’ from NetLogo model library). 
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