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Abstract 

Progress in biology has generated numerous lists of genes that share some property. But advancing from these lists of genes to understanding 
their roles is slow and unsystematic. Here we use RNA silencing in Caenorhabditis elegans to illustrate an approach for prioritizing genes for 
detailed study given limited resources. The partially subjective relationships between genes forged by both deduced functional relatedness 
and biased progress in the field were captured as mutual information and used to cluster genes that were frequently identified yet remain 
understudied. Some proteins encoded by these understudied genes are predicted to ph y sically interact with known regulators of RNA silencing, 
suggesting feedback regulation. Predicted interactions with proteins that act in other processes and the clustering of studied genes among the 
most frequently perturbed suggest regulatory links connecting RNA silencing to other processes like the cell cycle and asymmetric cell division. 
Thus, among the gene products altered when a process is perturbed could be regulators of that process acting to restore homeostasis, which 
pro vides a w a y to use RNA sequencing to identify candidate protein–protein interactions. Together, the analysis of perturbed transcripts and 
potential interactions of the proteins they encode could help prioritize candidate regulators of any process. 
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ntroduction 

enes and gene products are often collected as lists based on
nifying characteristics or based on experiments. Examples

nclude genes that show enrichment of a chromatin modifi-
ation, messenger RNAs (mRNAs) that change abundance in
esponse to a mutation and proteins that interact with another
rotein. After the initial identification of a set of genes as be-
onging to a list, multiple approaches ( 1 ) are needed to gen-
rate an explanatory model. However, many genes do not re-
eive further attention, as evidenced by recent meta-analyses,
hich highlighted numerous understudied genes in humans

 2 ,3 ). Since single publications often analyze only one or a few
enes, a wider view of genes with roles in a process could be
ained by comparing lists generated by several studies. Such
xploration could identify genes that are present in multiple
ists but have not yet been selected for detailed study. Identi-
eceived: July 2, 2024. Revised: October 18, 2024. Editorial Decision: December
The Author(s) 2025. Published by Oxford University Press on behalf of Nuclei

his is an Open Access article distributed under the terms of the Creative Comm
hich permits unrestricted reuse, distribution, and reproduction in any medium, 
fying these understudied genes is especially useful during the
early stages of a field, when coherent models for most ob-
served phenomena have not yet emerged. While this approach
is also extensible to lists of anything that is used to character-
ize living systems (changes in lipids, metabolites, localizations,
etc.), here we focus on lists of mRNAs, proteins and small
RNAs generated by the field of RNA silencing in the nema-
tode Caenorhabditis elegans . 

A gene present in many lists could be regulated in mul-
tiple separable ways and / or be regulated in one or a few
ways by connected sets of regulators (Figure 1 A). For exam-
ple, mRNA levels could be regulated through changes in tran-
scription, turnover, localization, small RNA production, etc.,
or all changes could occur because of turnover regulation by
a connected set of regulators. Changes in such genes could
alter specific regulatory outputs, making them integrators of
 1, 2024. Accepted: December 4, 2024 
c Acids Research. 
ons Attribution License (https: // creativecommons.org / licenses / by / 4.0 / ), 
provided the original work is properly cited. 
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Figure 1. Some genes are selectively regulated, reported as part of many lists and yet are understudied. ( A ) Schematics of possible regulatory 
architectures for genes found on multiple lists. ( Top ) Gene receiving one input form a large network. ( Bottom ) Gene receiving multiple inputs from 

separable networks. ( B ) Strategy for the identification of regulated genes. See Methods for details. ( C ) Relationship between S i , T i and g obtained using 
simulated data for an organism with 20,0 0 0 genes. Distributions of the probabilities of having at least one o v erlapping gene within the selected gene set 
[ P ( S i > 0)] for 100 runs of each parameter combination are presented as box and whisker plots. ( D ) Numbers of publications listed on WormBase for the 
top 25 regulated genes ordered using r 25 in the field of RNA silencing in C. elegans . Red line marks 10 publications. ( E ) Domains present in proteins 
encoded by understudied genes among the top 25 genes that are suggestive of function. Proteins with high-confidence AlphaFold str uct ures ( 12 ) were 
used to identify similar proteins as detected by Foldseek ( 17 ) or based on the literature [( 18 ); C38D9.2, F15D4.5 and W09B7.2]. ( F ) Heatmap showing the 
top 25 regulated genes. Presence (black) or absence (white) of each gene in each dataset is indicated. R elativ ely understudied ( < 10 references on 
WormBase) genes (red) or pseudogenes (grey) identified in (D) are indicated. ( G ) Hierarchical clustering of the top 25 genes based on co-occurrence in 
lists, where gene names colored as in (F) and ‘distance ( d J )’ indicates Jaccard distance. 
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inputs from many other regulators. Alternatively, they could
have no measurable consequence but might still be experimen-
tally useful as general indicators of perturbation. One way
that organisms could use general sensing of perturbation in a
process could be to return the process to the pre-perturbation
state through feedback ( 4 ). Such active resetting would enable
restoration of homeostasis faster than through the dissipation
of the perturbation alone. 

Here we present an approach to identify regulated but un-
derstudied genes in the field of RNA silencing in C. elegans .
While these genes could play a variety of roles, we find that
some of these genes encode predicted influencers of RNA-
regulated expression (PIRE) that can directly interact with key
regulators of RNA silencing. Others could serve as regulatory 
links that connect RNA silencing with other processes. The 
many hypotheses generated through these analyses need to be 
evaluated using experiments that selectively perturb regula- 
tory interactions. 

Materials and methods 

Data tables from 82 studies on RNA silencing in C. el- 
egans that were published between 2007 and 2022 were 
downloaded ( Supplementary Table S1 ), reformatted manu- 
ally and / or using custom scripts and filtered to generate lists 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
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hat only include entries with reported P -values or adjusted P -
alues < 0.05, when such values were available. Gene names
ere standardized across datasets using tools from Worm-
ase ( 5 ). The top ‘ g ’ genes that occur in the greatest num-
ers of tables were culled as the most frequently identified
enes. A measure for the extent of regulation of each gene
 r g ) was used to aid their prioritization for detailed study. Co-
ccurrence patterns of genes in different tables were captured
sing the Jaccard distance ( d J ) ( 6 ) or a symmetric measure of
ormalized mutual information ( 7 ), defined here as historical
utual information (HMI). The d J values were used to gen-

rate a dendrogram using the average linkage method (Fig-
re 1 ). HMI was used to group genes into clusters accord-
ng to the Girvan–Newman algorithm ( 8 ) and different sets of
enes were highlighted (Figure 8 ). Gene ontology (GO) analy-
es were performed using GO Resource [ https://geneontology.
rg/; ( 9 ,10 )]. 
Prediction of dimer formation between the 18 proteins en-

oded by understudied genes among the top 25 genes and
5 key regulators of RNA silencing were obtained using Al-
haFold 2 ( 11 ,12 ) run on a high-performance cluster (Zaratan
t UMD) and / or using the AlphaFold 3 ( 13 ) server online
 https:// golgi.sandbox.google.com/ ). Large regulators (DCR-
, EGO-1, ZNFX-1, NRDE-2 and MET-2) were tested on the
lphaFold 3 server initially and positive hits, if any, were ex-
mined again using AlphaFold 2 (e.g. interaction of EGO-1
ith W09B7.1). The computed models were processed using

ustom shell scripts, python programs and ChimeraX ( 14 ).
riefly, the highest ranked model for each pair of proteins
as depicted with the predicted aligned error (PAE) used

o highlight inter-protein interactions as pseudobonds col-
red according to the alphafold pae palette on ChimeraX
 Supplementary Movies S1 –S93 ). For models that satisfy the
riteria for maxPae ( < 5Å) and for distance ( < 6Å), an approx-
mation of the interaction area was calculated by isolating
he mutually constrained residues and using the ‘buriedarea’
ommand (ChimeraX). This area was divided by the product
f the number of amino acids in each protein to get a nor-
alized value and scaled uniformly before plotting (e.g. Fig-
re 2 B). Finally, the ranking scores (0.8*ipTM + 0.2*pTM
or AlphaFold 2.3 and 0.8*ipTM + 0.2*pTM + 0.5*disor-
er for AlphaFold 3) were used to shade the circle repre-
enting each interaction (Figure 2 B) and / or plotted (Figure
 A). All interactions predicted in the study were summarized
nto a network diagram (Figure 8 G) using Gephi and Adobe
llustrator. 

See Supplementary Material for detailed materials and
ethods. 

esults 

any genes have been repeatedly reported within 

ata tables but remain understudied 

o determine if there are any understudied regulated genes
hat are relevant for RNA silencing in C. elegans , we exam-
ned data from past studies in the field. While complete repli-
ation of each study might be needed for direct comparisons,
his goal is impractical. Even beginning with the ‘raw’ data de-
osited to public resources (e.g. fastq files after RNA-seq) and
epeating the analyses reported in a publication is not always
easible. Summary tables from previous analyses presented in
ublications provide a practical intermediate level of data to
se for comparisons across studies. Therefore, we collated a
total of 398 tables from 82 publications for comparison (see
‘Materials and methods’ section and Supplementary Table S1
for list of tables) and joined the tables together after stan-
dardizing gene names to yield genes that can be compared for
presence or absence across the 398 lists (Figure 1 B). About
86% (342 of 398) of the included gene lists document RNA
changes (mRNA, small RNA or total RNA) that accompany
a perturbation. Of the remaining ∼14%, some lists document
co-immunoprecipitating proteins ( 19 ), were pre-defined en-
richment lists ( 24 ), or are based on other experiments ( 13 ). To
prioritize a set of genes ( g) that receive extensive regulatory in-
put and / or that encode proteins that interact with many other
proteins and are yet included in selective lists, we propose a
metric r g (Figure 1 B). Since the likelihood of including a gene
from the lists increases with g, the metric is specified with a
subscript for each analysis (e.g. r 25 refers to a regulation score
when the top 25 genes that are most commonly present in lists
are considered) and defined to be: 

r g := 

n ∑ 

i =1 

S i 
T i 

where, g = size of gene set chosen for analysis, n = total num-
ber of lists with altered genes, S i = number of genes from the
i th list that is also present in the gene set g and T i = total
number of genes in the i th list. The larger the set of genes ( g)
selected, the greater the chance of a dataset (with T i genes)
having at least one overlapping gene within the selected gene
set [probability given by P ( S i > 0) in Figure 1 C]. The metric
r g is a decision aid that helps with choosing genes for experi-
mental analysis and is not to be taken as an objective measure
of the importance of the gene for the biological process under
study. 

The top 25 genes sorted according to their r 25 values in-
cluded the germline Argonaute HRDE-1 ( 15 ), which has been
the subject of numerous studies (Figure 1 D). While most
other genes are understudied ( < 10 publications on Worm-
Base), among the 25 genes is sdg-1 , which was recently re-
ported to be regulated by the double-stranded RNA (dsRNA)
importer SID-1 and encodes a protein with a suggested role
in feedback regulation of heritable RNA silencing by colo-
calizing with perinuclear germ granules ( 16 ). This discovery
suggests that the analysis of the additional genes with high r 25

values could also be fruitful. Of the 18 understudied genes that
encode proteins, seven had predicted structures of high confi-
dence (i.e. domains with pLDDT > 90) in the AlphaFold Pro-
tein Structure Database ( 12 ). These structures were then used
to identify related protein domains using Foldseek ( 17 ) (Figure
1 E; E -value < 0.05). These include conserved domains, most
of which have known biochemical activities: de-ubiquitinase
(E01G4.5), SPK (C08F11.7), aspartic protease (K02E2.6),
RNAse H1 (RNH-1.3), F-box B (FBXB-97), BTB plus MATH
(BATH-45) and RNA Recognition Motif (R06C1.4). Three
more proteins have been proposed to be nucleocapsid-like
proteins encoded by genes within retrotransposons [( 16 ,18 );
F15D4.5, C38D9.2 and W09B7.1 in Figure 1 E]. These candi-
dates can be experimentally analyzed in the future for possible
roles in RNA silencing. To explore the relationships between
these genes (Figure 1 F and G), we clustered the genes and gen-
erated a dendrogram where genes present together in differ-
ent lists are closer together (see supplementary methods ). The
dendrogram had a cluster (red in Figure 1 G) that included all
four pseudogenes, suggesting that this method could capture

https://geneontology.org/
https://golgi.sandbox.google.com/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
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Figure 2. Understudied regulated genes encode proteins predicted to interact with k e y regulators of RNA silencing. ( A ) Regulators of RNA silencing in 
different categories examined for predicted interactions with proteins encoded by understudied genes identified in this study. See text for details. ( B ) 
Predicted interactions between proteins encoded by top 25 genes ordered by their r 25 scores and known regulators of RNA silencing in C. elegans . The 
area of the interaction surface between partners normalized by the product of the sizes of the interactors is shown as a bubble plot (inter-protein 
PAE < 5Å and inter-residue distance < 6Å). Interactions with a low ranking score ( < 0.6) and / or that constrain fewer that 20 amino acids in proteins 
encoded by the understudied genes are indicated in grey. Also see Supplementary Figure S1 and Supplementary Movies S1 –S32 . ( C ) Proteins encoded 
by understudied genes with significant interactions are predicted to impact multiple steps in RNA silencing. ( D ) Predicted str uct ures for the five newly 
named PIRE proteins are shown with the per-residue confidence predicted local distance difference test (pLDDT) as present in the AlphaFold protein 
database ( 83 ). 
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functional relatedness despite the limitations and biases intro-
duced by the available data. 

Multiple proteins encoded by the top 25 genes are 

predicted to interact with known regulators of RNA 

silencing 

In general, understudied regulated genes could play diverse
roles, some of which could impact RNA silencing. Such feed-
back during RNA silencing is supported by recent observa- 
tions. For example, animals typically recover from silencing 
initiated by dsRNA within the germline ( 19 ) or in somatic 
cells ( 20 ). This recovery occurs despite the presence of am- 
plification mechanisms, suggesting that silencing ends either 
when the trigger dsRNA runs out and / or because of home- 
ostatic control through feedback inhibition. In support of 
self-limiting behavior that is expected upon feedback inhibi- 
tion, an inhibitor of RNA silencing is recruited to genes tar- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
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eted by dsRNA ( 21 ) and a regulatory loop limits the produc-
ion of some endogenous small RNAs ( 22 ). Some of the top
nderstudied regulated genes identified here could play a role
n the homeostatic return after perturbation. The return could
e achieved by modulating the activity of factors that pro-
ote RNA silencing in a variety of ways, including regulation
f transcription, post-transcriptional RNA processing, RNA
ocalization, translation, post-translational modifications on
roteins, protein localization, etc. Of these possibilities, one
hat could be surveyed computationally is regulation through
irect protein–protein interactions. Therefore, to test if any
f the proteins encoded by the top 25 genes could interact
ith known regulators of RNA silencing, we examined the
otential for protein–protein interactions using their predicted
tructures. 

We selected 25 known regulators of RNA silencing (see
igure 2 A) chosen for their roles in different phases of the
educed mechanism(s) of RNA silencing ( 23–25 ). These in-
lude proteins with roles in the processing of dsRNA and its
egulators; Argonaute proteins and their regulators; proteins
ith roles in secondary small RNA production and its regu-

ators; components of germ granules; and co-transcriptional
egulators (Figure 2 A). We then examined their predicted in-
eractions with the 18 proteins encoded by understudied reg-
lated genes among the top 25 (highlighted in red, Figure 1 G).
or 20 RNA regulators, we used AlphaFold 2, which makes
xtensive use of multiple sequence alignments for comput-
ng inter-protein interactions and has a success rate of ∼50–
0% ( 26 ,27 ). Since the computational cost of AlphaFold 2
scalates with the number of amino acids, interactions with
he remaining five larger regulators (DCR-1, EGO-1, ZNFX-
, NRDE-2 and MET-2) were tested on the recently avail-
ble but proprietary AlphaFold 3 server ( 13 ), which can pre-
ict interactions with ligands, and as with AlphaFold 2, uses
ultiple sequence alignments for its structure predictions. To

tratify the predicted interactions, we initially considered the
aximal inter-protein PAE and the distance between the in-

eracting residues (distance), which was allowed to be up to
wice the length of hydrogen bonds [ ∼3 Å ( 28 )]. Examining
nteractions with a criterion of PAE < 5 [which is more strin-
ent than the 8Å error that has been used successfully ( 29 )]
evealed numerous interactions (blue in Figure 2 B). There-
ore, to constrain the predictions further, we used the rank-
ng scores, which are a combination of interface-predicted
emplate modeling (ipTM) and predicted template modeling
pTM) scores: 0.8*ipTM + 0.2*pTM for AlphaFold 2.3 ( 11 )
nd 0.8*ipTM + 0.2*pTM + 0.5*disorder for AlphaFold 3
 13 ). We only considered interactions with a ranking score
 0.6, which is relatively high given than ipTM scores as low

s ∼0.3 can yield true positives ( 30 ), and that constrain a min-
mum of 20 residues in the proteins encoded by understudied
enes (not grey in Figure 2 B), which we define as predicted
nteractions of high confidence. Together, these criteria identi-
ed 32 interactions (Figure 2 B and Supplementary Movies S1 –
32 ). Among the regulators, RDE-3 and RDE-8 had the high-
st numbers of predicted interactors (five proteins each) and
mong the proteins encoded by understudied genes, FBXB-
7 had the highest number of predicted interactors (seven
roteins). These high-confidence interactors included proteins
hat were predicted to interact with every phase of the de-
uced mechanism(s) for RNA silencing (Figure 2 C). Since the
recise numbers of interacting residues required for a mean-

ngful interaction in vivo is variable and unknown, interac-
tions that constrain fewer residues could have measurable im-
pacts on function. Nevertheless, we conservatively designate
each protein that is predicted to interact with one or more
RNA regulators with relatively high confidence as a Predicted
Influencer of RNA-regulated Expression (PIRE). We refer to
five of these as PIRE-1 through PIRE-5 (Y20F4.4, C08F11.7,
E01G4.5, F15D4.5 and K02E2.6, respectively; Figure 2 D)
and preserve the names of the four that were already given
names based on structural homology (subunit of the Translo-
case of the Inner Mitochondrial Membrane TIMM-17B.2, the
F-box B protein FBXB-97 and the RNase H protein RNH-
1.3) or after detailed study (the SID-1-dependent gene pro-
tein SDG-1). For convenience, these nine putative interactors
(and any additional interactors identified below) are collec-
tively referred as PIRE proteins here. This provisional desig-
nation can be amended should more specific information re-
garding their roles be obtained through future experimental
studies. 

Each of these interactions (Figure 2 B and Supplementary 
Movies S1 –S32 ) suggest hypotheses for their functional im-
pact based on the known roles of RNA regulators and the
domains present in PIRE proteins (Figure 1 E). The two PIRE
proteins encoded by genes within retrotransposons (PIRE-4
and SDG-1) that also interact with regulators of RNA silenc-
ing, support the idea that retrotransposon-encoded genes in-
fluence their own RNA-mediated regulation [e.g. ( 16 )]. FBXB-
97, which is predicted to be an F-box protein ( 31 ), could pro-
mote ubiquitin-mediated degradation of its interactors (RDE-
4, ERI-1, NRDE-3, DEPS-1, PID-2, RDE-8 and RDE-3), se-
quester them (inhibiting their activity) or potentially pro-
mote ubiquitination of their interacting RNA ( 32 ). A prece-
dent for such an intersection between ubiquitin-mediated
protein degradation and small RNA-mediated RNA regu-
lation is the role for a ubiquitin ligase in degrading Arg-
onautes when there is extensive base-pairing between miR-
NAs and their targets ( 33 ,34 ). PIRE-5, which is predicted
to be a protease, could cleave its interactors (ERI-1, PID-
2, RDE-8 and SET-25) to regulate their activity—a mode of
regulation that has been recently elucidated for Argonaute
proteins ( 35 ) and implicated in RNA silencing within the
germline ( 36 ). Additional PIRE proteins with confidently pre-
dicted domains (e.g. RNase H in RNH-1.3, multiple domains
in PIRE-3 and SPK domain in PIRE-2) potentially implicate
new biochemical activities in the process of RNA silencing.
In all, two general modes of interaction between PIRE pro-
teins and the tested regulators of RNA silencing that are
not mutually exclusive could be discerned (Figure 3 ). In one
mode exemplified by FBXB-97 (Figure 3 , left), the interac-
tions with most regulators involve nearly the same set of
residues. In the other mode exemplified by PIRE-4 (Figure
3 , right), interactions with different regulators involve differ-
ent sets of residues. In summary, predictions using AlphaFold
identify numerous interactions that inspire follow-up work
to test hypotheses about the roles of PIRE proteins in RNA
silencing. 

Predictions by AlphaFold 2 and AlphaFold 3 do not 
always agree 

While AlphaFold 2 predicted all the interactions classi-
fied as high-confidence interactions, the one interaction pre-
dicted by AlphaFold 3 (EGO-1 and W09B7.1) with a max-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
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Figure 3. PIRE proteins interact with regulators of RNA silencing in two general modes. ( A ) Predicted interactions between the PIRE proteins (magenta) 
FBXB-97 (left) and PIRE-4 (right) with the known regulator RDE-8 (green) that are of high confidence (constraining > 20 amino acid residues with an 
inter-C α distance < 6Å and PAE < 5Å) are indicated with pseudo bonds. ( B ) Regions of the PIRE protein sequence constrained by the interacting 
regulator. Markers (black, ranking score > 0.6; grey, ranking score < 0.6) are enlarged with respect to the X-axis for visibility (e.g. the marker denoting the 
interaction between RDE-1 and FBXB-97 only indicates one residue). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/53/1/gkae1246/7944731 by guest on 14 January 2025
(Figure 2 B, Supplementary Figures S1 and S2 ). The reason for
this extreme discrepancy is unclear. 

To directly compare both approaches for predicting
protein–protein interactions, we examined some of the in-
teractions predicted by each approach using the other. We
first examined significant interactions predicted with a high
ranking score according to AlphaFold 2 ( > 0.8, Figure 4 A).
Of these, only the interaction between RNH-1.3 and RDE-
3 was confidently predicted by AlphaFold 3, albeit with a
lower score (0.85 for AF 2 versus 0.68 for AF 3). Align-
ing both predicted complexes using the RDE-3 protein re-
vealed that both predictions are in good agreement (Figure
4 B and Supplementary Movie S33 ). We next considered two
proteins, FBXB-97 and PIRE-4, for which multiple interac-
tors were predicted by AlphaFold 2 with varying confidence.
While AlphaFold 2 predicted interactions between PIRE-4 

and 3 RNA regulators (ranking = 0.73, 0.70 and 0.61), and 

between FBXB-97 and 7 RNA regulators (ranking = 0.66,
0.67, 0.75, 0.78, 0.75, 0.77 and 0.76), AlphaFold 3 only pre- 
dicted an interaction with RDE-3 for both proteins (Figure 
4 C, ranking = 0.78 and 0.79). The RDE-3-interacting residues 
of FBXB-97 predicted by both approaches overlapped but 
those of PIRE-4 did not (Figure 4 C). Furthermore, aligning 
the predicted protein–protein complexes using RDE-3 showed 

a large discrepancy in the positions of the interacting part- 
ners in both cases (Figure 4 D, FBXB-97, left; PIRE-4, right; 
and Supplementary Movies S34 and S35 ). Similarly, com- 
paring the predictions for interactions between EGO-1 and 
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Figure 4. Interactions predicted by AlphaFold 2 and by the AlphaFold 3 server can differ. ( A ) Comparison of the top ranking interactions between known 
regulators of RNA silencing and the PIRE proteins predicted by AlphaFold 2 [AF 2 ( 11 ); 0.8*ipTM + 0.2*pTM] with the score generated by AlphaFold 3 
[AF 3 ( 13 ); 0.8*ipTM + 0.2*pTM + 0.5*disorder]. A high-confidence prediction by both approaches is highlighted in bold. ( B ) Models for the interaction of 
RNH-1.3 with RDE-3 generated by AF 2 and AF 3 overlayed using RDE-3. Also see Supplementary Movie S33 . ( C ) Comparison of residues of PIRE 
proteins constrained through interactions as predicted by AF 2 (black) or by AF 3 (grey). ( D ) Comparison of interactions between FBXB-97 and RDE-3 
(left), and between PIRE-4 and RDE-3 (right) as predicted by AF 2 (black) and the AF 3 server (grey), respectively. Str uct ures are shown with differential 
coloring of each protein and o v erla y ed using the RDE-3 str uct ures in both cases. Also see Supplementary Movies S34 and S35 . ( E ) Interactions between 
EGO-1 (magenta or red) and W09B7.1 (green or cyan) predicted by AF 2 or AF 3. Black ovals indicate interacting regions with inter-protein PAE < 10Å
(left) or < 5Å (right). Also see Supplementary Movie S36 . 
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W09B7.1 also revealed large discrepancies (Figure 4 E and
Supplementary Movie S36 ). While a region of interaction was
predicted using AlphaFold 3 with PAE < 5Å and distance < 6Å
(Figure 4 E, right), regions of interaction were only detectable
using AlphaFold 2 when the maximal PAE allowed was in-
creased to 10 (Figure 4 E, left). Even at this lower threshold
for error, the predicted interacting regions differed between
the two approaches (black ovals in Figure 4 E). 

The reasons for the differences between predictions by Al-
phaFold 2 (AF 2) and AlphaFold 3 (AF 3) could be varied. For
example, differences in sampling of predictions, which are ex-
pected to correlate with success rate ( 37 ) (25 models per AF
2 run versus five per AF 3 run on the server) and / or differ-
ences in handling intrinsically disordered regions, for which
structures can be identified by AF 2 if they conditionally fold
( 38 ). Modifications to these algorithms that extend capabili-
ties continue to be developed [e.g. modeling of interacting in-
terfaces within intrinsically disordered regions ( 39 ), predict-
ing multiple conformations ( 40 ) and predicting large protein
assemblies ( 41 )]. Therefore, further comparisons as newer al-
gorithms for predicting protein–protein interactions continue
to be developed [e.g. ( 42 )] and customized exploration of cri-
teria for interactions ( 43 ) may be useful for determining when
each algorithm can aid the generation of hypotheses. 

Convergence and rarity of models support the use 

of flexible criteria for initial screens 

The RNH-1.3:RDE-3 complex is supported by relatively high-
confidence models predicted using AF 2 and AF 3 (Figure 4 A
and B), rnh-1.3 RNA accumulates in rde-3(-) animals ( 44 ,45 )
and both rnh-1.3 and rde-3 were featured in the abstract of an
early publication ( 46 ). Therefore, we examined the predicted
interactions between RNH-1.3 and RDE-3 in detail to refine
the criteria for identifying candidate interactors and to analyze
the potential reasons for differences between predictions by
AF 2 and AF 3. 

While the high-confidence model of the RNH-1.3:RDE-3
complex by AF 2 had a ranking score of 0.85, all the other 24
models from the run had much lower scores (Figure 5 A). In
fact, the highest-ranking score in 17 subsequent runs was only
0.51. This rarity of high-scoring models suggests that multi-
ple runs may be required on the AlphaFold 3 server as well
to discover the high scoring models. Consistently, only one of
five new runs of AF 3 resulted in a high-scoring model (Fig-
ure 5 B). Interestingly, an overlay of models with the top two
ranks showed a highly similar structure both in the case of AF
2 and AF 3 predictions despite the large differences in their
scores (0.85 versus 0.51 for AF 2 and 0.74 versus 0.35 for
AF 3 in Figure 5 C; and Supplementary Movies S37 and S38 ).
This observation suggests that for some protein complexes,
the models predicted with relatively low ranking scores could
nevertheless be close to the highest-scoring model. To system-
atically analyze the convergence of the models with ranking
scores, we overlayed the highest scoring models from the 18
runs of AF 2 and calculated the root mean square deviation
(RMSD) of each model from the highest-scoring one (Figure
5 D). Scores as low as ∼0.4 resulted in models that were within
∼4Å RMSD of the highest-scoring model. However, scores be-
low that (red line in Figure 5 D) were associated with models
that could either have a low (e.g. < 10Å) or high (e.g. > 20Å)
RMSD compared with the highest-scoring model. These anal-
yses suggest that models with a ranking score of 0.4 could be
worth exploring further, although we have preserved the more
conservative threshold of 0.6 in all subsequent analyses using 
AF 2. To make the contributions of the two interacting pro- 
teins symmetric, we propose that the product of the number 
of constrained residues in the bait ( n bait ) and that in the prey 
( n prey ) be > 100. Using these revised criteria, we re-examined 

all AF 2 predictions ( Supplementary Figure S3 ) and found 

that all 32 previously predicted interactions (Figure 2 B) were 
preserved, and an additional 10 interactions were predicted 

as significant ( Supplementary Figure S3 ). These additional in- 
teractions ( Supplementary Movies S39 –S48 ) include those of 
two RNA regulators with R06C1.4 (designated PIRE-6), two 

RNA regulators with C38D9.2 (designated PIRE-7) and one 
RNA regulator with T16G12.4 (designated PIRE-8). 

Taken together, these analyses suggest heuristics for man- 
aging false negatives. Since high-scoring models can be rare 
(1 in 450 AF 2 models with a score > 0.6 for RNH-1.3:RDE- 
3) and therefore require many runs to discover, false negative 
rate can be set based on available computational resources.
Given the early convergence of some models with increasing 
ranking score (a model with ∼0.4 ranking score only had an 

RMSD of ∼4Å compared with the highest scoring model for 
RNH-1.3:RDE-3), reducing the ranking threshold could lead 

to the discovery of interactors within fewer runs. In contrast,
false positives are difficult to estimate or manage because we 
would need a set of proteins that would not interact with each 

other under any circumstance—such an idealized set may not 
exist. 

Pseudogenes among the top 25 genes could 

encode proteins that interact with some RNA 

regulators 

Since pseudogenes could have the potential to encode pep- 
tides, we checked for this possibility in the four identified 

among the top 25 genes. Examination of all possible reading 
frames revealed uninterrupted stretches that could code for 
peptides for each ‘pseudogene’ (F09E9.7 - 141 aa, W04B5.1 

- 85 aa, W04B5.2 - 144 aa and ZK402.3 - 158 aa). These 
peptides if expressed have the potential to interact with some 
of the known RNA regulators tested (6 of 80 possible inter- 
actions in Supplementary Figure S4 ; Supplementary Movies 
S49 –S54 ). These could reflect interactions between peptides 
from these ‘pseudogenes’ or from the corresponding cod- 
ing genes. In support of this idea, the STAU-1-like peptide 
that could be encoded by the ‘pseudogene’ F39E9.7 and the 
dsRNA-binding protein STAU-1 ( 47 ) are both predicted to in- 
teract with ADR -2, CSR -1 and RDE-8 ( Supplementary Figure 
S4 ; Supplementary Movies S55 –S60 ). These results highlight 
the possibility that genes annotated as non-coding RNAs,
or pseudogenes could have a role encoding a regulatory 
peptide. 

Multiple predicted interactors of RDE-3 suggest 
regulated production of poly-UG RNAs 

Currently, information on the interactors of any protein in 

C. elegans is curated at WormBase ( 5 ) and the Alliance 
of Genome Resources ( 48 ) websites. We selected the poly- 
UG polymerase RDE-3, which catalyzes the production of 
a key intermediate of RNA silencing called poly-UG RNAs 
( 45 , 49 , 50 ), as a case study to examine the value added by
analysis using AlphaFold, if any. The websites list five physical 
interactors of RDE-3 identified through experiments reported 

in multiple publications [MUT-7 ( 51 ), MUT-16 ( 52 ), PIK-1 

( 53 ), PRG-1 ( 54 ) and RDE-8 ( 55 )]. Including these putative 
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Figure 5. High-ranking models can be rare, and models can con v erge early with increasing scores. ( A ) Distribution of ranking scores for the 25 models of 
RNH-1.3:RDE-3 generated by AF 2. ( B ) Multiple runs with different random seeds and resulting scores for models of RNH-1.3:RDE-3 generated by AF 3. 
( C ) Ov erla y of models with the highest scores from two different runs showing similar interactions between RNH-1.3 (magenta or red) and RDE-3 (green 
or lime) predicted by both AF 2 and AF 3. Pseudobonds depicting the PAEs for the constrained residues are highlighted for both pairs of models. Also 
see Supplementary Movie S37 and S38 . ( D ) A range of scores can underlie nearly similar architectures of a predicted complex. The highest scoring 
model for RNH-1.3:RDE-3 from each of 18 AF 2 runs (different colors) were superimposed using RDE-3. Top , Superimposed models for low ( < 10Å) and 
high ( > 20Å) RMSD values are shown. Bottom , Ranking scores are plotted after arranging models in increasing order of RMSD from the highest scoring 
model. 
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irect interactors, we tested the interaction of 22 regulators of
NA silencing and found significant interactions with 12 pro-

eins using AF 2 (Figure 6 A; Supplementary Movies S61 –S72 ).
ubsets of proteins appear to constrain different sets of
esidues on RDE-3 (Figure 6 B), suggesting different conse-
uences on RDE-3 activity upon interaction for different
roups of proteins. Taken together with the previously dis-
overed interactions, a total of 19 interactors are predicted
or RDE-3 by AF 2 (Figure 6 C). Of these, only six interactors
ere also identified by AF 3 when searched using five different

andom seeds (Figure 6 C). Of these six, only three identified
he same interaction interface (RNH-1.3, PIRE-2 and PIRE-
). Of the previously known and experimentally supported
hysical interactors, three were identified by AF 2 but not by
F 3 (MUT-16, PIK-1 and RDE-8). Two others (MUT-7 and
RG-1) could not be identified by AF 2 even after five differ-
nt runs (i.e among 125 models), suggesting that these are ei-
her indirect interactors or require additional multimerization
or complex formation. The extensive regulation of RDE-3
uggested by these predicted interactions is consistent with re-
ent experimental results that have revealed differences in the
atterns of poly-UG RNAs detected when a germline ( 45 ) or
omatic gene ( 20 ) is targeted by dsRNA, and the diversity of
oly-UG patterns associated with different forms of heritable
NA silencing ( 56 ). 

redictions after an immunoprecipitation could 

dentify direct links to other processes 

nteractions identified using immunoprecipitation followed by
ass spectrometry are likely to be strong interactions with

bundant proteins but can be direct or indirect. Immunopre-
ipitation experiments can also result in large lists of putative
interacting proteins [e.g. 365 for CSR-1 in one study ( 54 )],
which can make it challenging to prioritize the interactors
for further study. Examining candidate interactors using Al-
phaFold is potentially a way to distinguish direct interactors
from indirect interactors or spurious co-precipitates. 

To test this possibility, we chose a relatively selective
immunoprecipitation experiment that identified 12 putative
interactors of the Z-granule surface protein PID-2 ( 36 ).
Of this dozen, 11 were ∼1000 aa or smaller and therefore
amenable to testing using AF 2 with reasonable computa-
tional resources. Five were identified as significant interactors
with the following ranking scores: PID-5 – 0.63, PID-4 –
0.63, KIN-19 – 0.74, PAR-5 – 0.74 and T07C4.3 – 0.53
( Supplementary Figure S5A ; Supplementary Movies S73 –
S77 ). Even considering only the four proteins that satisfy
the more stringent criterion of > 0.6 ranking score, this
analysis provides useful information. First, it identifies PID-3
and PID-4 as direct interactors in agreement with further
experimental evidence provided in the study ( 36 ) and pre-
dicts the sets of residues constrained by the interactions
( Supplementary Figure S5B ), which can be tested using ad-
ditional experiments. Second, it suggests that KIN-19 and
PAR-5 are additional direct interactors. KIN-19 is an ortholog
of Casein kinase and was recently shown to phosphorylate
the Argonaute ALG-1 ( 57 ). The predicted interaction with
PID-2 suggests a wider role for this kinase in the regulation
of RNA silencing, potentially through the phosphorylation of
PID-2 or other substrates localized near Z granules. PAR-5
is a 14-3-3 protein required for the proper partitioning of
cytoplasmic components in the early embryo ( 58 ). Further-
more, PAR-5 does not show a significant interaction with 19
other tested regulators of RNA silencing after one AF 2 run
(Figure 7 A), is frequently identified as interacting with PID-2
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Figure 6. The poly-UG polymerase RDE-3 is predicted to interact with multiple proteins. ( A ) Predicted interactions of RDE-3 with known regulators of 
RNA silencing and the five proteins listed as ph y sical interactors on WormBase (MUT-16, MUT-7, PIK-1, RDE-8 and PRG-1) identified by AlphaFold 2.3 are 
sho wn. Siz es of circles indicate normalized interaction area and shading indicates ranking score. Grey indicates ranking scores < 0.6 and / or the products 
of numbers of constrained residues in RDE-3 and its interactors ( n bait × n prey ) < 100. Also see Supplementary Movies S61 –S72 . ( B ) Regions of RDE-3 
protein sequence constrained by the interacting regulators. Markers (black) are as in Figure 3 B. ( C ) Table summarizing interactors of RDE-3. 
Experimentally identified ph y sical interactors (interactor on WormBase?), highest score of AF 2 predicted interactions that are > 0.6 (25 models from 1 
run), highest score among AF 3 predicted interactions (25 models from 5 runs) and whether the AF 2 and AF 3 str uct ures are similar (con v ergence of AF 
2 and AF 3?) are indicated. Scores of AF 3 models that lack any interactions between the two proteins with a PAE < 5Å and a distance < 6Å are indicated 
in grey. 
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by AF 2 (Figure 7 B), and has an extensive interaction interface
(Figure 7 C) that constrains the C-terminal 17 amino acids of
PID-2 (Figure 7 D). Underscoring the high confidence in this
interaction, the same interaction is also predicted by AF 3
(Figure 7 E and Supplementary Movie S78 ) and the
RGFS 450 ECP sequence within the interaction domain is
close to a consensus (RxxpSxP) for binding 14-3-3 domains
( 59 ) with S 450 phosphorylated by an atypical Protein Kinase
C ( 60 ). Nevertheless, determining if, when, and where any
predicted interactions occur in vivo will require many future
experiments. 

Some predicted interactions could be challenging 

to demonstrate experimentally 

Obtaining experimental support for direct interactions be-
tween proteins can be difficult. For example, an interaction be-
tween the most abundant G α protein in the brain [G αo ( 61 ),
GOA-1 in C. elegans ] and the diacylglycerol kinase DGK-1 

is strongly predicted by genetic analysis ( 62 ,63 ). Both AF 2 

and AF 3 predict the same extensive binding between GOA- 
1 and DGK-1 ( Supplementary Figure S6 and Supplementary 
Movie S79 ). Furthermore, the interaction interface is largely 
preserved and reliably predicted by AF 3 when GOA-1 is 
by itself or bound to either GTP or GDP ( Supplementary 
Figure S6 and Supplementary Movie S79 ). Yet, early attempts 
using purified proteins failed to reveal a detectable inter- 
action between DGK-1 and GOA-1 in vitro ( 64 ), and this 
interaction has remained a conjecture for more than two 

decades. 
While biochemical approaches rely on preserving or recre- 

ating in vitro the unknown conditions in vivo to coax a de- 
tectable interaction between proteins, prediction algorithms 
that incorporate extensive multiple sequence alignments (e.g.
AF 2 and to an unknown extent AF 3) can use the co- 
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Figure 7. PAR-5 is predicted to interact with the Z-granule surface protein PID-2 / ZSP-1 but not with many other tested regulators of RNA silencing. ( A ) 
Predicted interactions of PAR-5 with known regulators of RNA silencing identified by AlphaFold 2.3 are shown. Area of circles and shading are as in 
Figure 6 A. ( B ) Distribution of ranking scores for the 25 models of PAR-5:PID-2 generated by AF 2. ( C ) Regions of PAR-5 protein sequence constrained by 
interactions with PID-2. Markers (black) are as in Figure 3 B. ( D ) Structure of the C-terminus of PID-2 constrained by PAR-5. ( E ) Overlay of models 
predicted by AF 2 and AF 3 superimposed using PAR-5 showing similar interactions between the C-terminus of PID-2 (lime or red) and PAR-5 (magenta 
or green) although the rest of the PID-2 protein are positioned differently in the two models. Pseudobonds are as in Figure 3 A. Also see 
Supplementary Movie S78 . 
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omplementary strengths, systematic analyses using both mul-
iple experimental approaches ( 1 ) and multiple prediction al-
orithms are needed to find the edge of predictability for
rotein–protein interactions. 

he top 100 genes include many that could link 

NA silencing to other processes 

o examine if the observations above would hold when ana-
yzing a larger set of genes, we examined the top 100 genes
rdered according to their r 100 values. To quantify the corre-
ated presence or absence of genes in different lists we used
 measure of mutual information ( 7 ) named here as Histor-
cal Mutual Information (HMI) to emphasize the subjective
ature of this measure because it depends on both functional
elatedness of the genes and biased availability or inclusion of
ata (see supplementary methods and the 6_HMI_explorer.py
rogram for exploring clusters of genes interactively). Using
MI to cluster these genes revealed three major clusters (64,

0 and 14 genes) and two other unconnected genes (Figure
 A, Supplementary Table S2 ) when communities were formed
ith a threshold distance (1-HMI) of 0.9 or less for a link be-

ween two genes. 
Only one cluster (cluster 1 in Figure 8 A) had significant

umbers of genes associated with GO terms ( Supplementary 
able S3 ). These genes encode proteins involved in RNA si-

encing and / or play roles in other processes such as cell di-
ision and germ cell development. Consistently, this cluster
lso had the greatest number of genes that have been de-
scribed in multiple publications (Figure 8 B), including all the
genes that have been featured in abstracts on RNA silencing
(Figure 8 C). Therefore, the analysis of additional genes in this
cluster could be relevant for RNA silencing and connect it
to other processes (e.g. the cell cycle). Several predicted in-
teractions are consistent with this speculation. One, among
the other genes in cluster 1 is the gene encoding PAR-5, which
is predicted to selectively interact with the known regulator
of RNA silencing PID-2 (Figure 7 ). The predicted interaction
could have a role in segregating PID-2, and potentially other
components of Z-granules, to the posterior side before the first
cell division during embryonic development ( 58 ). Two, cluster
1 also includes the gene encoding MCM-7, which is predicted
to selectively interact with CSR-1 (ranking score 0.59 in Fig-
ure 8 F; also see Supplementary Figure S7 and Supplementary 
Movie S80 ). This interaction is also supported by an immuno-
precipitation experiment ( 54 ) and it could have a role in the
chromosome segregation function of CSR-1 ( 65 ) because of
the established role of the MCM complex in DNA replication
( 66 ). Three, two other proteins encoded by genes in this clus-
ter that were also tested (CEY-2 and PAN-1) are predicted to
interact with some RNA regulators (8 of 40 potential interac-
tions tested in Figure 8 F; also see Supplementary Figure S7 and
Supplementary Movies S81 –S88 ). 

Since six of the eight pseudogenes are in a small cluster (Fig-
ure 8 E, 6 of 14 genes in cluster 2), the other genes in this clus-
ter could potentially be targets of regulation without specific
downstream regulation or be co-regulated sensors of pseudo-
gene RNA levels. Two PIRE proteins (PIRE-3 / E01G4.5 and
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Figure 8. Clusters formed by understudied regulated genes suggest priorities for detailed study. (A–E) Properties of the top 100 regulated genes in the 
field of RNA silencing in C. elegans. ( A ) Clusters of genes based on their HMI. Threshold for link: distance (1-HMI) < 0.9. (B–E) Network in ( A ) with 
nodes colored to show number of publications per gene (white, 0; black, ≥100) ( B ), genes that have been the main subject of abstracts on RNA 

silencing in C. elegans ( C ), pseudogenes (red) ( D ) and genes changed in hrde-1 mutants ( 69 ) (red), a sid-1 mutant ( 16 ) (cyan) or both (orange) ( E ). ( F ) 
Predicted interactions of proteins encoded by genes with different r 100 ranks with known regulators of RNA silencing. Sizes of circles indicate 
normalized interaction area and shading indicates ranking score. Grey indicates ranking scores < 0.6 and / or the products of numbers of constrained 
residues ( n bait x n prey ) < 100. Also see Supplementary Movies S80 –S93 . ( G ) All interactions (connecting lines) depicted were identified by AF 2 (grey). 
Some are supported by experimental evidence for physical interaction (magenta) and some are also predicted by AF 3 with either similar (green) or 
different (cyan) interfaces. Known regulators of RNA silencing are in red and those used as baits to look for predicted interactors (STAU-1, PID-2 and 
RDE-3) are in bold. Also see Supplementary Table S4 . 
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IRE-5 / K02E2.6) are also present in this cluster. Another gene
47H10A.5 encodes a protein with similarity to decapping
uclease (Foldseek, E -value < 0.05) and is targeted by miR-
43 ( 67 ), leading to RDE-1-dependent small RNA produc-
ion ( 67 ,68 ). Since the Y47H10A.5 protein is predicted to
nteract with multiple regulators of RNA silencing (Figure
 F, Supplementary Table S2 , Supplementary Figure S7 and
upplementary Movies S89 –S93 ), we designate it as PIRE-9. 

There is a large overlap between a set of genes that require
RDE-1 for downregulation [67 genes in both replicates from
orms grown at 15 

◦C ( 69 )] and genes in a single cluster (Fig-
re 8 F, 20 of 64 genes in cluster 3). One possible explana-
ion for this abundance and clustering could be that hrde-1 -
ependent gene lists are among the most numerous generated
y the field and / or included in our analysis (42 of 398 lists).
lternatively, genes that are subject to HRDE-1-dependent si-

encing could be extensively regulated by many other regula-
ors and require this additional downregulation for fitness—
.e. overexpression of these genes is detrimental. Consistent
ith this possibility, loss of HRDE-1 results in progressive

terility that can be reversed by restoring HRDE-1 activity
 69 ). Also, as expected for the use of HRDE-1 downstream
f SID-1, genes downregulated using sid-1 [18 genes up in an-
mals lacking sid-1 ( 16 )] overlap with genes in the same cluster
Figure 8 F and Supplementary Table S2 , 4 of 64 in cluster 3).

In addition to these hypotheses, how interacting with PIRE
roteins modulates the functions of known regulators of RNA
ilencing could be experimentally tested ( Supplementary 
able S3 ). Future studies by labs working on multiple as-
ects of RNA silencing in C. elegans have the potential to test
nd enrich the classification of the regulated yet understudied
enes revealed here, including by identifying many more PIRE
roteins. 

iscussion 

ur analysis has identified selectively regulated yet understud-
ed genes in the field of RNA silencing in C. elegans , some of
hich encode predicted influencers of RNA-regulated expres-

ion that act through protein–protein interactions. To facili-
ate easy inspection of all the predicted interactions identified
n this study, we generated a network diagram (Figure 8 G)
hat summarizes the 77 predicted interactions among 42 in-
eractors with varying amounts of support. Minimally, all in-
eractions shown are predicted by AlphaFold 2.3. A survey of
he information available on WormBase for all 42 interactors
evealed that 8 of these interactions are already supported by
ome experimental evidence for physical interaction. We note
hat this is not an exhaustive list of all possible interactions
ven among the 42 interactors considered and expect that fu-
ure experimental work will refine this view. 

he inevitable bias of progress 

ias during progress in a field is unavoidable and its causes are
omplex, including availability of technology, researcher pre-
isposition, perceived importance of a direction, current soci-
tal need, etc. Therefore, the comprehensive appraisal of a field
hrough equal representation of all important aspects is im-
ractical. Indeed, our analysis involved the manual collation
f many datasets for comparison, which could have resulted
n omissions and inclusions that spark disagreements. While
uture extensions of this work could automate the process of
aggregating and comparing data, flexible inclusion of different
lists in the analysis would be needed to enable customization
based on the expertise, interests and risk tolerance of individ-
ual labs. Furthermore, earlier studies using older technologies
could have led to conclusions that need revision. For exam-
ple, when analyzed using multi-copy transgenes, the dsRNA-
binding protein RDE-4 showed a cell non-autonomous ef-
fect ( 70 ,71 ), but when analyzed using single-copy transgenes,
RDE-4 showed a cell autonomous effect ( 72 ). Since different
researchers could interpret such conflicting data differently
(e.g. differences in levels of tissue-restricted expression versus
differences in extent of misexpression in other tissues), it is
useful to preserve the ability to customize lists. With the ex-
panding number of lists generated by large-scale experimental
approaches in different fields, identifying selectively regulated
yet understudied genes could aid the prioritization of genes for
detailed mechanistic studies using the limited resources and
time available for any lab. 

Function(s) of the x -dependent gene 

Different properties of a single protein or RNA could be
important for different biological roles ( 73 ,74 ), or the same
properties could be important for different processes. Despite
such variety, a gene found in many lists could become asso-
ciated with a single label because of the historical sequence
of discovery (e.g. HRDE-1-dependent genes; many in clus-
ter 3, Figure 8 E), thereby obscuring additional roles of that
gene. Most of the PIRE proteins are predicted to interact with
more than one tested regulator of RNA silencing (e.g. 10 in
Supplementary Figure S3 ). If these interactions are validated
through experimental analyses, it will not be possible to clas-
sify these PIRE proteins into single pathways. Indeed it can be
challenging to delineate pathways when multiple regulators in
an intersecting network make quantitative contributions to an
observed effect ( 20 ). The well-recognized difficulty in defining
the function of a gene ( 75 ) is exacerbated in these cases, mak-
ing it more appropriate to consider these proteins as entities
within a system whose roles depend on context [see ( 76 ) for
similar ideas]. 

Metrics for historically contingent progress 

Exhaustive collation of past progress can be difficult because
of the many formats in which data and inferences are pre-
sented. Of these, tabular data are particularly amenable to fu-
ture computation. The simple r g metric provides a weighted
sum of frequently occurring features (e.g. genes) for prioritiz-
ing the top 25 genes (Figure 1 ) or 100 genes (Figure 8 ). How-
ever, the number of genes considered for calculating r g can in-
fluence the prioritized set obtained ( Supplementary Table S4 ).
Specifically, the same genes were identified as the top 25 genes
by considering 1000 genes (1000th r 1000 gene being present
in 53 lists) or 100 genes (100th r 100 gene being present in 72
lists), and 16 of these genes were identified by considering 25
genes (25th r 25 gene being present in 84 lists). More compli-
cated metrics that consider other useful aspects of the data
such as effect size ( 77 ) of the reported change (e.g. measured
for fold-change when using RNA-seq), discoverability of the
change using a technique (e.g. influenced by abundance of a
protein for immunoprecipitation) and reliability of the tech-
nique used (e.g. adequacy of replicates for estimating noise)
could be developed in the future to extract more information.
HMI provides a measure of predictability that is an unknown

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1246#supplementary-data
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mix of functional relatedness and biased attention, hence ‘his-
torical’. This metric is simply a normalized measure of mutual
information ( 78 ), which captures the predictability of one fea-
ture given knowledge about another feature and is widely used
( 79 ) because of the ability to capture both correlations and an-
ticorrelations without any knowledge of underlying causality.
The tendency to progress by building upon past discoveries
and to communicate by connecting to concepts of perceived
importance makes the growth of knowledge akin to growth
of networks through preferential attachment (see simulation
in Supplementary Movie S94 ). Metrics that take advantage
of this aspect could be developed to reduce bias in the infor-
mation (e.g. by weighting based on community size). How-
ever, separating features that appear to be important based on
progress in a field from what is inherently important given the
characteristics of a system can be challenging. 

From transcript changes to protein–protein 

interactions 

Positive feedback loops that drive growth and development
are a ubiquitous feature of life ( 80 ). Yet, living systems are
also characterized by homeostasis ( 4 ), which needs negative
feedback to suppress runaway processes. For example, in a
chain of biochemical reactions, product inhibition ( 81 ) can be
used to regulate production to match need. While this organi-
zation enables compensation in response to change, complete
compensation for all processes is clearly not possible as evi-
denced by the fact that many mutations have measurable con-
sequences. A specific case of this general principle is transcrip-
tional adaptation, where the mutation-induced degradation
of a transcript results in compensatory changes in the levels
of other transcripts ( 82 ). The existence of PIRE proteins sug-
gests that another way for organisms to compensate for the
perturbation of a protein that regulates a process is to change
the levels of other proteins that can regulate the same process
through protein–protein interactions. Thus, we speculate that
perturbing a protein could sometimes alter the mRNA levels
of its interactors because of the prevalence of feedback regu-
lation in living systems. If true, this feature of life provides a
strategy for combining RNA sequencing and protein structure
predictions to identify protein–protein interactions of regula-
tory importance. 
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(AntonyJose-Lab / Lalit_Jose_2024) and has been archived at
Zenodo ( https:// zenodo.org/ records/ 13952718 ). 
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Supplementary Methods 
 
Analysis of gene data tables. To identify studies on RNA silencing in C. elegans with data tables 
that can be compared across all studies, we used the term ‘C. elegans RNA silencing’ to search 
PubMed.  After examining the abstracts of more than 2000 studies that resulted from the search, 
the available data tables from 82 studies that were published between 2007 and 2022 were 
downloaded (Table S1), reformatted into 398 distinct tables manually and/or using custom scripts. 
Metadata if supplied by the authors for each table were retained as comments above each table. 
Gene names were unified using the Gene Name Sanitizer 
(https://wormbase.org/tools/mine/gene_sanitizer.cgi) as on 26 April 2022 (0_sanitization.py). It is 
unclear how an exhaustive list of papers that is nevertheless field-restricted could ever be defined 
for any field. Accordingly, our list of RNA silencing studies in C. elegans is not exhaustive and we 
apologize to colleagues whose work is not included in our analysis. Nevertheless, this effort 
captured additional datasets compared with those available in other more unrestricted collections 
that attempt to collect tables from all studies on an organism (e.g. WormExp 2.0 (1)). Only 30 of 
the 55 studies published before 2017 and included in this study overlapped with the 461 included 
in WormExp 2.0 as on 27 Jul 2017, which was available for download from the website 
(https://wormexp.zoologie.uni-kiel.de/wormexp/). This overlap was determined by comparing the 
paper IDs using a custom script (0_dataset_wormexp_overlap.ipynb). Data tables that reported 
p-values or adjusted p-values were filtered to only include entries with p < 0.05 (0_filter_pvals.py). 
Since fold-changes were not always available, for every dataset, genes were scored as present 
or absent (1_TableOccupancy.py) to generate a heatmap featuring the most frequently changed 

genes sorted by rg values, where the number of genes considered (g) can be arbitrary (e.g., 25 
in Fig. 1F and 100 in Fig. 8). The relationships between the parameters Si, Ti, and 𝑔 (Fig. 1C) 

were obtained using simulated data by sampling 100 random sets of genes (0_rg_simulation_box-
whisker.ipynb) as the top 𝑔 genes from a total of 20,000 genes and similarly sampling the genes 

in datasets of various sizes (Ti). For each gene in published lists in the field, the number of 
references listed on Wormbase (https://wormbase.org/) was used as a measure of the extent to 
which the gene has been studied (2_fig1D_r25_references.ipynb). Genes with fewer than 10 
references were defined as understudied (Fig. 1D). To generate the heatmap 
(3_fig1F_fig1G_r25_related.ipynb, 4_heatmaps_normalized_100_full.ipynb), genes were 
ordered by decreasing values of 𝑟25 (top to bottom in Fig. 1F) and datasets were ordered by 

decreasing values of 
𝑆𝑖

𝑇𝑖
. (left to right in Fig. 1F). To determine the co-occurrence patterns of all 

pairs of genes, Jaccard distances (𝑑𝐽 = 1 − 
|𝑋∩𝑌|

|𝑋∪𝑌|
, where X and Y are sets of lists containing genes 

x and y, respectively) were calculated for each pair and all genes were hierarchically clustered 
using the ‘average’ linkage method. Relationships between genes based on occurrence in 
datasets were also captured as normalized mutual information (5_sklearn_nmi.ipynb) and defined 
as historical mutual information (HMI) to emphasize the dependence on the biased availability or 
inclusion of data based on historical progress in addition to the functional relatedness of the 
genes. Specifically, it was defined to be a symmetric and normalized mutual information score (2) 
and was calculated using the function normalized_mutual_info_score from scikit-learn (3) for 
genes 𝑋 and 𝑌: 

𝐻𝑀𝐼(𝑋; 𝑌) ∶=
2. 𝑀𝐼(𝑋; 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
 , 

where 𝑀𝐼(𝑋; 𝑌) =  ∑ ∑ 𝑃(𝑋,𝑌)(𝑥, 𝑦)𝑥𝑦 𝑙𝑜𝑔2 (
𝑃(𝑋,𝑌)(𝑥,𝑦)

𝑃𝑋(𝑥)𝑃𝑌(𝑦)
), 𝐻(𝑋) =  − ∑ 𝑃(𝑥)𝑙𝑜𝑔2(𝑃(𝑥))𝑥 , and 𝐻(𝑌) =

 − ∑ 𝑃(𝑦)𝑙𝑜𝑔2(𝑃(𝑦))𝑦 . Mutual information (MI) determines how different the joint distribution of the 

gene pair (X, Y) is from the product of the marginal distributions of each gene, H(X) and H(Y) are 
the entropies of the two genes, and 𝑃(… ) indicates probabilities. Clusters of genes based on HMI 

https://wormbase.org/tools/mine/gene_sanitizer.cgi
https://wormexp.zoologie.uni-kiel.de/wormexp/
https://wormbase.org/tools/mine/gene_sanitizer.cgi


values were identified using the Girvan-Newman algorithm (4). An interactive graphical user 
interface (GUI) for visualizing clusters and genes of interest (6_HMI_explorer.py) was created 
using Dash (Python) and figures highlighting genes within the clusters were generated 
(7_fig8.ipynb). Gene Ontology (GO) analysis was performed on all clusters using the Gene 
Ontology Resource ((5,6); https://geneontology.org/). Tables of the top 25 genes ranked by 𝑟25 

when different numbers of total top genes are considered (Table S5) were generated for 
comparison (8_table_S5_r25_with_100_total.ipynb, 8_table_S5_r25_with_1000_total.ipynb). 
 
Analysis of predicted protein structures. Predicted protein-protein interactions were examined 
using Alphafold 2.3.2 and the Alphafold 3 server, downloaded to a local machine, and analyzed 
using ChimeraX and custom scripts. 
Alphafold 2. For each understudied regulated gene, files with protein sequences (.fasta) encoded 
by the longest transcript isoform were obtained from Wormbase and combined using the program 
‘fasta_assembly_for_alphafold_dimer.py’ to create paired fasta files to be used for testing the 
potential for an interaction between the two proteins. Batches of potential interactors prepared in 
this way were run on the high-performance computing cluster (Zaratan, UMD) using a batch 
submission script (‘alphafold_multimer_batch_submission.sh’) that modifies another script for 
submitting alphafold 2.3.2 jobs with the model_preset flag set to ‘multimer’ 
(‘alphafold_multimer.sh’). Typical resource requests included a wall time of 18 hours, one A100 
GPU, and 8 CPUs at 6 GB each. Upon completion, a script for reducing the results folder to keep 
only the highest-ranking model was run (‘alphafold_results_cleanup.sh’) before downloading from 
the HPCC to a local machine. To analyze and annotate the downloaded models, the 
‘alphafold2_dimer_batch_computed_on_zaratan.py’ program and run using the command 
‘chimerax --exit alphafold2_dimer_batch_computed_on_zaratan.py’, which runs the python 
program within ChimeraX-1.7.1. Data for all predicted interactions to be analyzed together were 
collected under the same file (‘yyyy_m_d_alphafold2_summary_stats’), where yyyy_m_d 
indicates date. This program also generated most of the supplemental movies. The program 
‘predicted_influencer_of_RNA_regulated_expression_d2.py’ was then run to extract information 
about the interactions and make plots with either absolute interaction areas or areas normalized 
based on the sizes of the interacting proteins (passed to the program through the files 
(‘yyyy_m_d_A_list_sizes’ and ‘yyyy_m_d_B_list_sizes’). Additional plots showing the residue 
numbers and locations of residues interacting with each regulator were created using the program 
‘interactor_map_for_a_protein_with_another_set_of_proteins.py’. The final figure showing the 
scaled area of interaction shaded according to the ranking score (Fig. 2B) was generated using 
‘final_interactors_filtered_by_model_rankings.py’. 
 Analysis of Alphafold 2 models using chimeraX and the downstream computations can 
also be performed using the two scripts ‘predicted_dimer_chimerax.py’ and 
‘predicted_dimer_python.py’. These streamlined scripts also generate distributions of the ranking 
scores for the 25 models identified with each run of Alphafold 2.   
Alphafold 3. Essentially the same workflow as above was used after downloading the predicted 
interactions for pairs of proteins from the Alphafold 3 server, which was run in batches of 10 or 20 
per day based on quota availability. Parsing the resulting data required some minor modifications 
to the programs because the error files (.json) and the structure files (.cif) were in different formats 
and labeled differently. The program ‘alphafold3_dimer_batch_computed_on_google.py’ was 
used for analyzing these predictions. 
Comparisons of Alphafold 2 and Alphafold 3. For comparisons of the two prediction approaches, 
the ‘alphafold3_dimer_batch_computed_on_google_comparing_af2_af3.py’, 
‘predicted_influencer_of_RNA_regulated_expression_d2_af2_vs_af3_af3_run.py’ and 
‘interactor_map_for_a_protein_with_another_set_of_proteins_comparing_af2_vs_af3_rerun_on
_af3.py’ programs were used.    

https://geneontology.org/


Illustrations. Illustrations of protein-protein complexes for figures were created manually using 
ChimeraX (1.7.1 or 1.8-rc2024.05.24) and Adobe Illustrator (28.5). Typical workflow on ChimeraX 
included opening the .pdb or .cif files and the associated predicted aligned error files (.json or 
.pkl), aligning them as necessary, coloring different proteins, overlaying multiple models when 
relevant, and adding inter-protein pseudobonds based on criteria before saving images and/or 
movies. All interactions predicted in the study were summarized using Gephi (v. 0.10.1 
202301172018) and Adobe Illustrator (v. 28.7.1).  

  



Supplementary Figures 
 

 
Figure S1. Numbers of candidate PIRE protein residues constrained by the predicted 
interacting regulator of RNA silencing in C. elegans. Numbers of residues that interact with 
an inter-protein PAE < 5Å and a distance between residues < 6Å are plotted for each interaction 
between a protein encoded by an understudied gene and a known regulator of RNA silencing in 
C. elegans. A threshold of 20 residues (blue line) and a ranking score >0.6 was used to separate 
candidate PIRE proteins (highlighted in bold) from others encoded by understudied genes.  



 
Figure S2. Regions of the candidate PIRE protein sequence constrained by the predicted 
interacting regulator of RNA silencing in C. elegans. Markers (black) are enlarged with respect 
to the X-axis for visibility (e.g., the marker denoting the interaction between RDE-1 and FBXB-97 
only indicates one residue). Understudied genes that encode candidate PIRE proteins are 
highlighted in bold.  



 
Figure S3. Predicted interactions between proteins encoded by the top 25 genes and 
known regulators of RNA silencing identified with more permissive criteria. (A) The area of 
the interaction surface between partners normalized by the product of the sizes of the interactors 
is shown as a bubble plot. Interactions are shaded according to ranking score.  Interactions for 
which the product of the numbers of interacting residues (nbait x nprey) with an inter-protein 
predicted aligned error < 5Å and inter-residue distance < 6Å in a model with a ranking score > 0.6 
is less than 100 are shaded grey. Ten interactions identified in addition to those found using 
criteria in Fig. 2B are highlighted with red circles. (B) Regions of the additionally identified proteins 
constrained by the interacting regulators (red circles in A) with markers depicted as in Fig. 3B. (C) 
Predicted structures for additional PIRE proteins with pLDDT as in Fig. 2D. Also see Movies S39 
to S48. 



 
Figure S4. Predicted interactions of potential peptides encoded by pseudogenes and a 
homologous protein with regulators of RNA silencing. (A) Interactions are depicted as in Fig. 
S3A. The proteins are labeled with their closest BLAST matches separated by an underscore 
(e.g., F39E9.7_STAU-1 indicates that the peptide that could be encoded by F39E9.7 shares 
homology with STAU-1). (B to D) Regions of the longest peptide sequences encoded by F39E9.7 
(B), W04B5.2 (C), and ZK402.3 (D) constrained by the interactors are shown with markers as in 
Fig. 3B. (E) Regions of STAU-1 protein sequence constrained by interacting regulators of RNA 
silencing are shown with markers as in Fig. 3B. Also see Movies S49 to S60. 



 
Figure S5. Predicted interactions between PID-2/ZSP-1 and proteins identified in a 
pulldown of PID-2 (as reported in (7)). (A) Interactions are depicted as in Fig. S3A. (B) Regions 
of the PID-2 protein sequence constrained by the interactors are shown with markers as in Fig. 
3B. Also see Movies S73 to S77. 
 

 



Figure S6. Interactions between the G alpha protein GOA-1 and the diacylglycerol kinase 
DGK-1 predicted by AlphaFold. (A) Interaction between GOA-1 (magenta) and DGK-1 (green) 
predicted by AlphaFold 2. (B) Overlay of the GOA-1::DGK-1 complex predicted by AlphaFold 2 
(cyan) with those predicted by the AlphaFold 3 server (green, magenta, and orange for free, GTP-
bound, and GDP-bound GOA-1, respectively). Also see Movie S79. 
 

 
Figure S7. A sampling of predicted interactions between regulators of RNA silencing and 
proteins encoded by the top 100 genes with varying r100 ranks. (A to F) Regions of the PAN-
1 (A), HIL-4 (B), MCM-7 (C), CEY-2 (D), Y47H10A.5 (E), and Y17D7B.4 (F) protein sequences 
constrained by the interactors are shown with markers as in Fig. 3B. Also see Movies S80 to S93. 
(G) Predicted structures for an additional PIRE protein with pLDDT as in Fig. 2D. Also see Fig. 
8F. 

 
  



Tables and Table Legends 
 
Table S1. Data tables used in this study. List of the 398 tables used along with links to the 82 
studies from which they were taken and a brief description of the data types. See excel file. 
Table S2. Top 100 genes grouped according to historical mutual information (HMI). List of 
genes within clusters formed by the top 100 genes with distance (1 – HMI) < 0.9. The two genes 
that are not part of any clusters are listed as singletons.  

Cluster 1 Cluster 2 Cluster 3 Singletons 

csr-1 F39F10.4 gpx-8 R03D7.2 

tbb-2 H09G03.1 F40D4.13 pyk-1 

hsp-1 W04B5.1 dyf-3  

cey-2 Y47H10A.5 C46G7.5  

pgl-3 Y17D7B.4 citk-1  

hrde-1 F39E9.7 Y57G11C.51 

mcm-7 ZK402.3 saeg-2  

klp-15 E01G4.5 F09C8.2  

par-5 W04B5.2 gly-13  

klp-7 W05H12.2 fbxb-97  

cdk-1 K02E2.6 Y20F4.4  

hil-4 Y37E11B.2 ZK973.8  

wago-1 Y105C5A.14 spch-1  

hsp-90 F55C9.3 Y57G7A.5  

cpg-1  pan-1  

rme-2  W09B7.1  

wago-4  elf-1  

tba-2  C38C3.3  

  T20F7.1  

  fkb-8  

  K05C4.9  

  F15D4.5  

  sea-2  

  F55B11.6  

  F41G4.7  

  T16G12.8  

  C30G12.1  

  saeg-1  

  rnh-1.3  

  Y53F4B.5  

  E02H9.3  

  his-24  

  ZK909.3  



  vet-6  

  C04G6.6  

  lin-15B  

  qdpr-1  

  W09B7.2  

  K09H9.7  

  T02G5.4  

  lido-18  

  T11F9.10  

  scrm-4  

  clp-6  

  C08F11.7  

  pdfr-1  

  F58H7.5  

  T16G12.4  

  C09G5.7  

  Y48G1BM.6  

  C18D4.6  

  ZK795.2  

  ceh-20  

  W05F2.4  

  bath-13  

  timm-17B.2  

  fbxa-192  

  R03H10.6  

  bath-45  

  C55C3.3  

  R06C1.4  

  C38D9.2  

  T03D3.5  

  glit-1  

  mif-2  

  spe-41  
 
Table S3. Gene Ontology terms associated with genes in Cluster 1 among the top 100 
genes clustered using historical mutual information. 
 

GO term  # in set # identified # expected Enrichment P value 

regulation of biological 
process 

4202 13 4.03 3.23 3.20E-02 

developmental process 1846 10 1.77 5.65 5.10E-03 



cellular component 
organization 

1830 10 1.75 5.7 4.70E-03 

cellular component 
organization or 
biogenesis 

1982 10 1.9 5.26 9.78E-03 

anatomical structure 
development 

1696 9 1.63 5.54 2.55E-02 

regulation of 
macromolecule 
metabolic process 

1646 9 1.58 5.71 1.99E-02 

regulation of metabolic 
process 

1745 9 1.67 5.38 3.22E-02 

cell cycle process 400 9 0.38 23.48 9.93E-08 

cell cycle 517 9 0.5 18.16 9.66E-07 

negative regulation of 
biological process 

962 8 0.92 8.68 3.55E-03 

reproductive process 803 8 0.77 10.4 9.01E-04 

sexual reproduction 425 8 0.41 19.64 6.51E-06 

cell differentiation 824 8 0.79 10.13 1.10E-03 

cellular developmental 
process 

826 8 0.79 10.11 1.12E-03 

mitotic cell cycle 269 8 0.26 31.03 1.74E-07 

organelle organization 1091 8 1.05 7.65 9.11E-03 

negative regulation of 
cellular process 

854 7 0.82 8.55 2.18E-02 

mitotic cell cycle process 233 7 0.22 31.35 3.21E-06 

embryo development 516 7 0.49 14.16 7.57E-04 

regulation of cell cycle 245 6 0.23 25.55 2.01E-04 

multicellular organismal 
reproductive process 

384 6 0.37 16.3 2.82E-03 

regulation of cell cycle 
process 

185 5 0.18 28.2 1.78E-03 

gamete generation 254 5 0.24 20.54 8.45E-03 

germ cell development 176 5 0.17 29.64 1.39E-03 

cellular process involved 
in reproduction in 
multicellular organism 

178 5 0.17 29.31 1.47E-03 

microtubule cytoskeleton 
organization 

202 5 0.19 25.83 2.74E-03 

microtubule-based 
process 

281 5 0.27 18.57 1.38E-02 

embryo development 
ending in birth or egg 
hatching 

303 5 0.29 17.22 2.00E-02 

regulatory ncRNA-
mediated gene silencing 

109 4 0.1 38.29 7.97E-03 

regulation of mitotic cell 
cycle 

94 4 0.09 44.4 4.41E-03 



oogenesis 117 4 0.11 35.67 1.06E-02 

female gamete 
generation 

144 4 0.14 28.99 2.41E-02 

nuclear chromosome 
segregation 

121 4 0.12 34.49 1.21E-02 

chromosome segregation 155 4 0.15 26.93 3.22E-02 

nuclear division 166 4 0.16 25.14 4.22E-02 

 
Table S4. Potential hypotheses for the function(s) of PIRE proteins without common 
names. Function(s) of the known regulators of RNA silencing could be promoted or inhibited by 
interacting PIRE proteins. 
 

PIRE Interactor Known function(s) of RNA regulator(s) 

PIRE-1/ 
Y20F4.4 

ADR-2 
HRDE-1 

A-to-I editing of dsRNA (double-stranded RNA) (8) 
Argonaute activity (9) 

PIRE-2/ 
C08F11.7 

ADR-2 
CSR-1 
RDE-3 
SET-25 

A-to-I editing of dsRNA (double-stranded RNA) (8) 
Argonaute activity (10)  
poly-UG RNA production (11,12) 
histone methyltransferase activity (13,14) 

PIRE-3/ 
E01G4.5 

DEPS-1 
RDE-3 
PGL-1 
MUT-7 
SET-25 

germ granule formation and/or RNA silencing (15) 
poly-UG RNA production (11,12) 
mRNA regulation and/or P granule formation (16)  
3’-5’ exoribonuclease activity (17) 
histone methyltransferase activity (13,14) 

PIRE-4/ 
F15D4.5 

DEPS-1 
HRDE-1 
PRG-1 
RDE-8 
RDE-3 

germ granule formation and/or RNA silencing (15) 
Argonaute activity (9) 
Argonaute activity (18) 
RNA endonuclease and/or mRNA binding activity (19) 
poly-UG RNA production (11,12) 

PIRE-5/ 
K02E2.6 

ERI-1 
PID-2 
RDE-8 
SET-25 

3’-5’ exoribonuclease activity (20) 
piRNA-mediated silencing and/or Z-granule formation (7) 
RNA endonuclease and/or mRNA binding activity (19) 
histone methyltransferase activity (13,14) 

PIRE-6/ 
R06C1.4 

RDE-3 
PRG-1 

poly-UG RNA production (11,12) 
Argonaute activity (18) 

PIRE-7/ 
C38D9.2 

RDE-1 
PRG-1 

Argonaute activity (21,22) 
Argonaute activity (18) 

PIRE-8/ 
T16G12.4 

CSR-1 
 

Argonaute activity (10)  

PIRE-9/ 
Y47H10A.5 

ADR-2 
ERI-1 
PID-2 
MUT-16 
SET-25 

A-to-I editing of dsRNA (8) 
3’-5’ exoribonuclease activity (20) 
piRNA-mediated silencing and/or Z-granule formation (7) 
secondary small RNA production and mutator foci formation (23) 
histone methyltransferase activity (13,14) 

 

Table S5. rg rank order of frequently identified genes. Top 25 rank-ordered genes obtained 

by calculating rg using 25, 100, or 1000 of the most frequently listed genes among the 398 
tables considered in this study. In bold are genes shared with the top 25 identified using the 
most frequent 1000 genes.  



r25 genes r100 genes  r1000 genes  

C55C3.3 0.0164 C55C3.3 0.0164 C55C3.3 0.0164 

timm-17B.2 0.0149 timm-17B.2 0.0149 timm-17B.2 0.0149 

Y20F4.4 0.0135 Y20F4.4 0.0135 Y20F4.4 0.0135 

C08F11.7 0.0125 C08F11.7 0.0125 C08F11.7 0.0125 

E01G4.5 0.0120 E01G4.5 0.0120 E01G4.5 0.0120 

ZK402.3 0.0119 ZK402.3 0.0119 ZK402.3 0.0119 

C09G5.7 0.0118 C09G5.7 0.0118 C09G5.7 0.0118 

hrde-1 0.0117 hrde-1 0.0117 hrde-1 0.0117 

C18D4.6 0.0117 C18D4.6 0.0117 C18D4.6 0.0117 

R06C1.4 0.0116 R06C1.4 0.0116 R06C1.4 0.0116 

C38D9.2 0.0115 C38D9.2 0.0115 C38D9.2 0.0115 

F15D4.5 0.0115 F15D4.5 0.0115 F15D4.5 0.0115 

T16G12.4 0.0109 Y57G11C.51 0.0112 Y57G11C.51 0.0112 

fbxb-97 0.0107 pan-1 0.0111 pan-1 0.0111 

W04B5.1 0.0103 hil-4 0.0111 hil-4 0.0111 

spe-41 0.0102 cdk-1 0.0111 cdk-1 0.0111 

scrm-4 0.0098 T16G12.4 0.0109 T16G12.4 0.0109 

F39E9.7 0.0098 fbxb-97 0.0107 fbxb-97 0.0107 

K02E2.6 0.0097 F39F10.4 0.0106 F39F10.4 0.0106 

W04B5.2 0.0096 K09H9.7 0.0106 K09H9.7 0.0106 

rnh-1.3 0.0095 tbb-2 0.0105 tbb-2 0.0105 

bath-45 0.0094 saeg-1 0.0105 saeg-1 0.0105 

F58H7.5 0.0084 W04B5.1 0.0103 W04B5.1 0.0103 

SDG-1 0.0062 spe-41 0.0102 spe-41 0.0102 

W09B7.1 0.0032 csr-1 0.0101 csr-1 0.0101 

 
 
Supplementary Movie Legends 
 
Movie S1. TIMM-17B.2 and ADR-2 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S2. TIMM-17B.2 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S3. TIMM-17B.2 and RDE-8 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S4. TIMM-17B.2 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S5. Y20F4.4 and HRDE-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S6. C08F11.7 and ADR-2 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S7. C08F11.7 and CSR-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S8. C08F11.7 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S9. C08F11.7 and SET-25 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S10. E01G4.5 and PGL-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S11. E01G4.5 and MUT-7 with inter-protein predicted aligned error < 5 and distance < 6  



Movie S12. E01G4.5 and SET-25 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S13. F15D4.5 and DEPS-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S14. F15D4.5 and RDE-8 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S15. F15D4.5 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S16. FBXB-97 and RDE-4 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S17. FBXB-97 and ERI-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S18. FBXB-97 and NRDE-3 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S19. FBXB-97 and DEPS-1 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S20. FBXB-97 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S21. FBXB-97 and RDE-8 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S22. FBXB-97 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S23. K02E2.6 and ERI-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S24. K02E2.6 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S25. K02E2.6 and RDE-8 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S26. K02E2.6 and SET-25 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S27. RNH-1.3 and RDE-1 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S28. RNH-1.3 and HRDE-2 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S29. RNH-1.3 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S30. RNH-1.3 and SET-25 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S31. SDG-1 and ADR-2 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S32. SDG-1 and RDE-8 with inter-protein predicted aligned error < 5 and distance < 6  
Movie S33. RNH-1.3 and RDE-3 predicted by AlphaFold 2 versus the AlphaFold 3 server  
Movie S34. FBXB-97 and RDE-3 predicted by AlphaFold 2 versus the AlphaFold 3 server  
Movie S35. PIRE-4 and RDE-3 predicted by AlphaFold 2 versus the AlphaFold 3 server  
Movie S36. EGO-1 and W09B7.1 predicted by AlphaFold 2 versus the AlphaFold 3 server 
Movie S37. Overlay of two models for the RNH-1.3:RDE-3 complex predicted by AlphaFold 2. 
Movie S38. Overlay of two models for the RNH-1.3:RDE-3 complex predicted by AlphaFold 3. 
Movie S39. PIRE-1 and RDE-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S40. DEPS-1 and PIRE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S41. RDE-3 and PIRE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S42. R06C1.4 and PRG-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S43. R06C1.4 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S44. C38D9.2 and RDE-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S45. C38D9.2 and PRG-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S46. PRG-1 and PIRE-4 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S47. HRDE-1 and PIRE-4 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S48. T16G12.4 and CSR-1 with inter-protein predicted aligned error < 5 and distance < 
6. 
Movie S49. ADR-2 and the longest peptide that could be encoded by F39E9.7 with inter-protein 
predicted aligned error < 5 and distance < 6. 
Movie S50. CSR-1 and the longest peptide that could be encoded by F39E9.7 with inter-protein 
predicted aligned error < 5 and distance < 6. 
Movie S51. RDE-8 and the longest peptide that could be encoded by F39E9.7 with inter-protein 
predicted aligned error < 5 and distance < 6. 
Movie S52. PRG-1 and the longest peptide that could be encoded by W04B5.2 with inter-
protein predicted aligned error < 5 and distance < 6. 
Movie S53. RDE-8 and the longest peptide that could be encoded by W04B5.2 with inter-
protein predicted aligned error < 5 and distance < 6. 



Movie S54. ADR-2 and the longest peptide that could be encoded by ZK402.3 with inter-protein 
predicted aligned error < 5 and distance < 6. 
Movie S55. ADR-2 and STAU-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S56. RDE-1 and STAU-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S57. PRG-1 and STAU-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S58. ALG-2 and STAU-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S59. CSR-1 and STAU-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S60. RDE-8 and STAU-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S61. ADR-2 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S62. CSR-1 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S63. DEPS-1 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S64. ERGO-1 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S65. MUT-16 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S66. NRDE-3 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S67. PID-2 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S68. PIK-1 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S69. PIR-1 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S70. RDE-4 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S71. RDE-8 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S72. RDE-10 and RDE-3 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S73. PID-5 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S74. PID-4 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S75. KIN-19 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S76. PAR-5 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S77. T07C4.3 and PID-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S78. Overlay of models for the PAR-5:PID-2 complex predicted by AlphaFold 2 and 
AlphaFold 3. 
Movie S79. Overlay of models for the GOA-1:DGK-1 complexes predicted by AlphaFold 2 and 
AlphaFold 3. 
Movie S80. CSR-1 and MCM-7 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S81. ADR-2 and PAN-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S82. ERI-1 and PAN-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S83. HRDE-1 and PAN-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S84. HRDE-2 and PAN-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S85. MUT-7 and PAN-1 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S86. RDE-1 and CEY-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S87. RDE-8 and CEY-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S88. RDE-3 and CEY-2 with inter-protein predicted aligned error < 5 and distance < 6. 
Movie S89. Y47H10A.5 and ADR-2 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S90. Y47H10A.5 and ERI-1 with inter-protein predicted aligned error < 5 and distance < 
6. 
Movie S91. Y47H10A.5 and MUT-16 with inter-protein predicted aligned error < 5 and distance 
< 6  
Movie S92. Y47H10A.5 and PID-2 with inter-protein predicted aligned error < 5 and distance < 
6  
Movie S93. Y47H10A.5 and SET-25 with inter-protein predicted aligned error < 5 and distance 
< 6  
Movie S94. Simulation illustrating the growth of networks through preferential attachment 
(Screen capture of ‘Preferential Attachment Simple’ from NetLogo model library). 
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