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ABSTRACT 

Interacting molecules create regulatory 

architectures that can persist despite turnover of 

molecules. Although epigenetic changes occur 

within the context of such architectures, there is 

limited understanding of how they can influence the 

heritability of changes. Here I develop criteria for 

the heritability of regulatory architectures and use 

quantitative simulations of interacting regulators 

parsed as entities, their sensors and the sensed 

properties to analyze how architectures influence 

heritable epigenetic changes. Information contained 

in regulatory architectures grows rapidly with the 

number of interacting molecules and its 

transmission requires positive feedback loops. 

While these architectures can recover after many 

epigenetic perturbations, some resulting changes 

can become permanently heritable. Such stable 

changes can (1) alter steady-state levels while 

preserving the architecture, (2) induce different 

architectures that persist for many generations, or 

(3) collapse the entire architecture. Architectures 

that are otherwise unstable can become heritable 

through periodic interactions with external 

regulators, which suggests that the evolution of 

mortal somatic lineages with cells that reproducibly 

interact with the immortal germ lineage could make 

a wider variety of regulatory architectures heritable. 

Differential inhibition of the positive feedback 

loops that transmit regulatory architectures across 

generations can explain the gene-specific 

differences in heritable RNA silencing observed in 

the nematode C. elegans, which range from 

permanent silencing, to recovery from silencing 

within a few generations and subsequent resistance 

to silencing. More broadly, these results provide a 

foundation for analyzing the inheritance of 

epigenetic changes within the context of the 

regulatory architectures implemented using diverse 

molecules in different living systems. 
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SIGNIFICANCE 

Regulatory interactions in living systems are 

recreated in successive generations. Practical ways 

of analyzing how the information required for this 

recreation is transmitted across generations and how 

it can be changed are lacking. Simulating all 

heritable information by parsing regulatory 

interactions in terms of entities, their sensors, and 

the sensed properties reveals the minimal 

requirements for the heritability of regulatory 

interactions and how they influence the inheritance 

of epigenetic changes. Application of this approach 

can explain recent experimental results on the 

inheritance of RNA silencing across generations in 

the nematode C. elegans. Since all interactors can 

be abstracted as entity-sensor-property systems, 

similar analyses can be widely used to understand 

heritable epigenetic changes. 

 

INTRODUCTION 

Patterns formed by interactions between molecules 

can be preserved by living systems even as the 

molecules change over time. For example, the 

localization and activity of many different kinds of 

molecules are repeated in successive generations 

during comparable stages, establishing 

transgenerational waveforms that preserve form and 

function [1-3]. At any time, interactions that can be 

used to predict future arrangements of molecules 

define regulatory architectures that drive change or 

preserve homeostasis. Such architectures that arose 

with the origin of life have diversified since through 

descent with modification to form the many 

heritable regulatory architectures that are now 

transmitted across generations along with the 

genome. 

Interactors that form regulatory 

architectures can span many scales, but descriptions 

at particular scales are expected to be most useful 

for a given experimental technique or approach [4]. 

For example, molecules can interact to form a 

complex that both provides output to and receives 

input from another complex, which in turn might be 

regulated by an organelle. Such interactions can be 

described as ‘top-down’ or ‘bottom-up’ based on 

the sequential order in which different levels of 

organization such as molecules, complexes, 
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organelles, cells, tissues etc. are considered to create 

an explanatory hierarchy. Considering these multi-

scale interaction networks in terms of entities, their 

sensors, and the sensed properties provides a 

flexible framework for analysis [3] that can be used 

to progressively refine models (Fig. S1). In these 

entity-sensor-property (ESP) systems, all 

interactors of interest can be conveniently defined 

as entities with some entities acting as sensors. Such 

sensors can cause changes in the rest of the system 

or the environment in response to changes in 

particular properties of other entities. Some 

interactors have compositions that change over time 

(e.g., biomolecular condensates with molecules in 

equilibrium with other dissolved molecules in the 

surrounding liquid [5]). Such dynamic interactors 

can be included by considering them as entities 

whose integrity and properties depend on the 

properties of some other entities in the system 

and/or the environment (see [6] for a similar 

definition for degrees of individuality). Defined in 

this way, all ESP systems capture regulatory 

architectures that could persist over time even as the 

interacting entities and sensors change. For 

example, a gated ion channel acts as a sensor when 

it responds to an increase in the intracellular 

concentrations of an ion with a change in 

conformation, allowing the import of other ions 

from the extracellular environment. During 

development, such an ion channel could be replaced 

by another with similar properties, allowing the 

persistence of the regulatory relationships. 

Therefore, the analysis of ESP systems is a useful 

approach for examining heritable regulatory 

architectures to inform mechanistic studies that aim 

to explain phenomena using relationships between 

specific interactors (e.g., epigenetic inheritance 

using small RNA, chromatin, 3D genome 

organization, etc.).  

Here I consider the transmission of 

information in regulatory architectures across 

generational boundaries to derive principles that are 

applicable for the analysis of heritable epigenetic 

changes. Only a small number of possible 

regulatory architectures formed by a set of 

interactors are heritable. Their maintenance for 

many generations requires positive feedback loops. 

Such heritable regulatory architectures carry a vast 

amount of information that quickly outstrips the 

information that can be stored in genomes as the 

number of interactors increase. Quantitative 

simulations of perturbations from steady state 

suggest that these architectures can recover after 

many epigenetic perturbations, but some resulting 

changes can become heritable. Transient 

perturbations reveal diagnostic differences between 

regulatory architectures and suggest ways to 

generate heritable epigenetic changes for particular 

architectures. Unstable architectures can become 

heritable through periodic interactions with external 

sources of regulation (e.g., somatic cells for 

architectures within the germline), revealing a 

strategy for making a wider variety of regulatory 

architectures heritable. Transgenerational inhibition 

that tunes the activity of positive feedback loops in 

regulatory architectures can explain the gene-

specific dynamics of heritable RNA silencing 

observed in the nematode C. elegans. 

 

RESULTS 

Information in heritable regulatory 

architectures grows rapidly with the number of 

interactors  

As cells divide, they need to transmit all the 

regulatory information that maintains homeostasis. 

This imperative is preserved across generations 

through a continuum of cell divisions for all 

organisms as evidenced by the similarity of form 

and function in successive generations. Such 

transmission of regulatory information across 

generations occurs in conjunction with the sequence 

information transmitted by replicating the genome 

during each cell division. The maximal information 

that can be transmitted using the genome sequence 

is proportional to its length (log2[4].l = 2l bits for l 
base pairs). To determine how the maximal 

information transmitted by interacting molecules 

increases with their number (Table 1), the 

regulatory architectures that can be formed by 1 to 

4 entities were considered. Perpetual inheritance of 

such regulatory architectures requires sustained 

production of all the interacting molecules, i.e., 

every interactor must have regulatory input that 

promotes its production to overcome dilution at 

every cell division and other turnover mechanisms, 

if any. Indeed, this requirement was fundamental for 

conceiving the origin of life [7-10] and remains 

necessary for its persistence. Therefore, the minimal 

heritable regulatory architecture (HRA) is that 
formed by two molecules that mutually promote 

each other’s production (Fig. 1, ‘A’), resulting in a 



 

positive feedback loop. However, not all positive 

feedback loops form HRAs. For example, positive 

feedback loops that promote the transient 

amplification of changes such as that formed by two 

molecules that mutually repress each other’s 

production [11] are not compatible with perpetual 

inheritance because both molecules will be 

eventually lost by dilution or turnover.  

Distinct architectures that can be formed by 

a set of interacting regulators can be represented as 

directed graphs that are non-isomorphic and weakly 

connected [12]. Imposing the need for positive 

regulation for heritability reveals that only 7 of the 

13 possible 3-node graphs formed by 3 interactors 

can be HRAs and only 125 of the 199 possible 4-

node graphs can be HRAs (see Methods for 

computation). Including either positive or negative 

regulation for each interaction in a HRA and then 

selecting only architectures that include positive 

regulatory input for every interactor resulted in non-

isomorphic weakly connected directed graphs that 

represent the distinct regulatory architectures that 

are heritable (Table 1): two entities form one HRA, 

three form 25, and four form 5604. Thus, with four 

interactors, the maximal information that can be 

transmitted using HRAs (log2[5604] ≈12.45 bits) 

surpasses that transmitted by a four base-pair long 

genome (log2[4].4 = 8 bits). The combinatorial 

growth in the numbers of HRAs with the number of 

interactors thus provides vastly more capacity for 

storing information in larger HRAs compared to 

that afforded by the proportional growth in longer 

genomes. 

Genetic and epigenetic perturbations can 

generate different heritable changes 

To examine how each of the 26 simplest 

HRAs (Fig. 1 and Fig. S2) responds to a 

perturbation from steady state, ordinary differential 

equations that describe the rates of change of each 

entity in each HRA were developed (see 

Supplementary Information) and used to simulate 

steady states (Fig. 2 and Fig. S3 to S9). At steady 

state, the concentrations of all interactors 

(𝑥0, 𝑦0, 𝑧0) remain constant because the 

combination of all regulatory input, which must 

cumulatively  promote the production of each entity 

(𝑘𝑥𝑦 , 𝑘𝑦𝑧 , 𝑘𝑧𝑦 , etc), is equal to the turnover of that 

entity (𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧). In principle, a genetic or non-

genetic (i.e., epigenetic) perturbation could alter one 

or more of the following: the concentration of an 

entity, the strength of a regulatory link, the rate of 

turnover of each entity, and the polarity of an 

interaction. Of these, the most widely used 

perturbation that is easy to accomplish using current 

experimental techniques is reducing the 

concentration of an entity/sensor (e.g., using a loss-

of-function mutation, knockdown of an mRNA, 

degradation of a protein, etc.). Indeed, the use of 

genome editing [13] for removal and RNA 

interference (RNAi) [14] for reduction of an 

entity/sensor are common during the experimental 

analysis of living systems. Therefore, the impact of 

permanent or transient loss of an entity was 

examined in detail.  

To simulate genetic change, the response 

after removal of each entity/sensor was examined in 

turn for each HRA (Table S1, left panels in Fig. 2, 

Fig. S3 – S9). Deviations from unregulated turnover 

of the remaining entities (dotted lines, left panels in 

Fig. 2, Fig. S3 – S9) reveal the residual regulation 

and are diagnostic of different regulatory 

architectures. When the removed interactor was an 

entity with no regulatory input into the other 

sensors, the remaining two sensors were unaffected 

(e.g., left panel, loss of z in Fig. S3B, S3D, and 

S3E). Residual promotion resulted in slower decay 

(e.g., left panels, y in Fig. 2C, 2E, and 2H) and 

residual inhibition resulted in more rapid decay 

(e.g., left panels, x in Fig. 2G; y in Fig. 2F, z in Fig. 

2C, 2D, 2E, and 2H). In some cases, when the 

remaining architecture was composed of two 

sensors that promote each other’s production, there 

was continuous growth of both because their new 

rates of production exceed their rates of turnover 

(e.g., left panels, z in Fig. 2B, S4B, S5B, S7B, S7C, 

S8B-D). In other cases, the remaining architecture 

resulted in slower decay of both because their new 

rates of production were insufficient to overcome 

turnover (e.g.,  left panels, z in Fig. S4A, S5A, S6A-

D, S8A).  

To examine scenarios where epigenetic 

perturbations could cause heritable changes, the  

threshold for observing a defect was set at 0.5x of 

the steady-state levels (dotted line, right panels in 

Fig. 2, Fig. S3 – S9). RNAi can cause detectable 

defects that are heritable [14] and the conditions that 

promote or inhibit heritable epigenetic change after 

RNAi of a gene have been proposed to depend upon 

the regulatory architecture [15]. To simulate RNAi 

of an entity/sensor, the response after a transient 



 

reduction of each entity/sensor to 2x below the 

threshold required for observing a defect was 

examined in turn for each HRA (right panels in Fig. 

2, Fig. S3 – S9). The responses after this transient 

epigenetic perturbation were different from that 

after genetic perturbation (compare left and right in 

Fig. 2 and Fig. S3 – S9), as expected. Many HRAs 

recovered the levels of all entities/sensors above the 

threshold required for detecting a defect (e.g., right 

panels in Fig. 2B, 2C, 2D, 2E, and 2H). In some 

cases, this perturbation was sufficient to maintain 

the architecture but with a reduced steady-state level 

of all entities/sensors (e.g., reduction of x in Fig. 2A, 

right; Fig. S3B-E, right; Fig. S4B, right; Fig. S7C, 

right). Notably, whether recovery occurs with the 

steady-state levels of each entity/sensor returning 

above or below the threshold for observing a defect 

depended not only on the architecture, but also on 

the identity of the perturbed entity/sensor (e.g., 

compare reduction of x vs. y in Fig. S3A, right; x vs. 

y or z in Fig. S2B, right; x vs. y or z in Fig. S3C, 

right). Transient reduction of other entities/sensors 

below the threshold for observing defects was also 

observed in many cases (e.g., levels of z when x was 

perturbed in Fig. 2C, right; of z when y was 

perturbed in Fig. 2D, right; of z when x was 

perturbed in Fig. 2E, right; of x and y when z was 

perturbed in Fig. 2H, right). In some cases, recovery 

of original architectures occurred even after 

complete loss of one entity/sensor (e.g., after 

transient loss of z in Fig. 2G, right; of y in Fig. S8B, 

right; of y in Fig. S8D, right). Such recovery from 

zero can be understood as re-establishment of the 

regulatory architecture within the duration of 

simulation (100 in Fig. 2, Fig. S3 – S9) and is 

analogous to basal activity in the absence of 

inducers (e.g., leaky production of LacY permease 

from the lac operon in the absence of lactose [16], 

which allows the initial import of the lactose 

required for activating the lac operon). 

Alternatively, such recovery can also be understood 

as arising from the production of the missing 

entity/sensor as a byproduct when the activity of the 

upstream regulator increases beyond a threshold. 

Transient perturbations were also observed to 

induce different architectures that can persist for 

many generations (e.g., transient reduction of z 

resulting in loss of y and mutually promoted growth 

of x and z in Fig. 2F, right; also see Fig. S8E and 

S9A). Such continuous growth after an epigenetic 

change provides opportunities for achieving new 

steady states through dilution via cell divisions 

during development, potentially as part of a new cell 

type. Finally, some transient perturbations also led 

to the collapse of the entire architecture (e.g., 

transient perturbation of y in Fig. S9A, right). 

In summary, genetic and epigenetic 

perturbations from steady state can cause a diversity 

of changes in HRAs that constrain the possible 

regulatory architectures consistent with 

experimental data obtained by perturbing them. 

HRAs that are nearly indistinguishable by genetic 

perturbation can be distinguished using epigenetic 

perturbations, underscoring the complementary 

nature of genetic and epigenetic perturbations.  

Changes in HRAs caused by single mutations 

form a sparse matrix 

Just as mutations in a DNA genome can 

persist through replication at each cell division, 

changes in HRAs can persist by the formation of 

new positive feedback loops or the liberation of 

previously inhibited positive feedback loops. Six 

types of changes in sequence can arise from the four 

bases in a DNA genome upon mutation (A‹–›T, A‹–

›G, A‹–›C, T‹–›G, T‹–›C, G‹–›C, with density of the 

change matrix = 1 [6/6]). To determine the 

analogous types of changes in regulatory 

architectures, the capacity for each of the 26 

simplest HRAs (A to Z in Fig. 1) to change into 

other HRAs was considered (Fig. 3). Single 

perturbations of any interactor (entity/sensor) could 

result in the loss of the interactor, loss of an 

interaction, or a change in the polarity of an 

interaction (e.g., [17]). These perturbations could 

‘mutate’ the HRA by either collapsing the entire 

architecture or stably changing it into a new HRA 

(Fig. 3). Only changes that do not eliminate all 

positive regulatory inputs to an interactor can result 

in the persistence of a regulatory architecture rather 

than the eventual loss of one or more entities. 

Furthermore, since at steady state all gain of an 

entity/sensor is balanced by loss (via dilution at 

every cell division and/or other turnover 

mechanisms), any permanent reduction in the 

promotion of an entity/sensor will ultimately lead to 

its loss. Finally, if there is promotion of one sensor 

in a positive feedback loop and inhibition of another 

sensor in the same positive feedback loop, then the 

net input can be positive or negative depending on 

the relative magnitudes of the inputs. With these 

considerations, enumeration of the changed HRAs 



 

that can result from a perturbation revealed that the 

26 HRAs can be mutated to generate 61 different 

changes (24 through loss of interaction alone, 21 

through change in polarity of interaction alone, and 

16 through either change in regulation or though 

loss of an entity, with density of the change matrix 

≈ 0.19 [61/325]). Thus, unlike changes in DNA 

sequence, not all changes are immediately 

accessible among HRAs (change matrix of 1 vs. 

0.19, respectively). Nevertheless, the heritable 

information transmitted using regulatory 

architectures is vast because even two or three 

interactors can form 26 heritable architectures that 

are collectively capable of 61 changes through 

single perturbations. This capacity is an 

underestimate because, single mutations can also 

result in the gain of new interactions that combine 

multiple HRAs into larger regulatory architectures 

with more interactors.  

The constrained transition from one HRA at 

steady state to the next adjacent HRA through a 

single change (Fig. 3) could skew the frequencies of 

different HRAs observed in nature and restrict the 

mechanisms available for development and/or 

evolution. For example, the HRA ‘A’ is accessible 

from 16 other HRAs but ‘C’ and ‘T’ are each 

accessible only from one other HRA (‘J’ and ‘U’, 

respectively). Furthermore, HRAs that rely on all 

components for their production (‘C’, ‘F’, ‘H’, ‘K’, 

and ‘T’) cannot change into any other HRAs from 

steady state without the addition of more positive 

regulation because any permanent loss in regulation 

without compensatory changes in turnover will 

result in the ultimate collapse of the entire 

architecture. These constraints can be overcome if 

change can occur through regulatory architectures 

that are not indefinitely heritable. 

Deducing regulatory architectures from 

outcomes after perturbations is complicated by 

multiple HRAs resulting in the same HRA when 

perturbed (e.g., 16 HRAs can result in ‘A’ when 

perturbed, Fig. 3). While measurement of dynamics 

after perturbations of each entity/sensor in turn can 

distinguish between all 26 architectures, the 

temporal resolution required is not obvious. This 

difficulty in accurate inference is apparent even for 

the simplest of perturbation experiments when 

inference relies only on end-point measurements, 
which are the most common in experimental 

biology. For example, a common experimental 

result is the loss of one regulator (x, say) leading to 

an increase in another (y, say), which is frequently 

interpreted to mean x inhibits y. However, an 

alternative interpretation can be that y promotes x 

and itself via z, which competes with x. In this 

scenario, removal of x leads to relatively more 

promotion of z, which leads to a relative increase in 

y. These equivalent outcomes upon loss or reduction 

of an entity in different architectures highlight the 

difficulty of inferring the underlying regulation after 

perturbation of processes with feedback loops. 

Therefore, simulations that enable exploration of 

outcomes when different interactors are perturbed at 

different times could enhance the understanding of 

underlying complexity, reduce biased inference, 

and better guide the next experiment. 

Simple Entity-Sensor-Property systems enable 

exploration of regulatory architectures 

The most commonly considered regulatory 

networks [18] are either limited in scope and/or are 

not causal in nature. For example, gene regulatory 

networks [19] consider transcription factors, 

promoter elements, and the proteins made as the key 

entities. Additional specialized networks include 

protein-protein interaction networks (e.g., [20]), 

genetic interaction networks (e.g., [21]), and 

signaling networks (e.g., [22]). However, regulation 

of any process can rely on changes in a variety of 

molecules within cells, ranging from small 

molecules such as steroid hormones to organelles 

such as mitochondria. Furthermore, experimental 

studies often seek to provide explanations of 

phenomena in terms of a diversity of interacting 

entities. A common expression for all possible 

regulatory networks that preserves both causation 

and heritability can be derived by parsing all the 

contents of the bottleneck stage between two 

generations (e.g., one-cell zygote in the nematode 

C. elegans) into entities, their sensors, and the 

sensed properties [3]. An additional advantage of 

such entity-sensor-property systems is that it is 

possible to consider entities that are sensed by a 

particular sensor even via unknown intermediate 

steps, allowing for simulation of regulatory 

networks despite incomplete knowledge of 

regulators.  

For a given genome sequence, the number 

of distinguishable configurations of regulators 

represented as entities and sensors is given by the 

following equation [3]: 



 

𝑐𝑡𝑜𝑡 = ∑ 𝑒𝑖

𝑏

𝑖=1

(∑ 𝑠𝑗

𝑠𝑖

𝑗=1

(∑ 𝑝𝑘

𝑝𝑗

𝑘=1

))                (1) 

where, e is the measured entity (total b in 

the bottleneck stage between generations: 𝑛𝑏 in 

system, 𝑜𝑏 in environment), s is the measuring 

sensor (total si for ith entity), which is itself a 

configuration of entities drawn from the total N per 

life cycle (i.e., f(Y), with each Y ⊆{e1, e2, …, eN}), 

and p is the attainable and measurable values of the 

property measured by the sensor (total pj for the jth 

sensor of the ith entity). An entity or configuration 

of entities is considered a sensor only if changes in 

its values can change the values of other entities in 

the system or in the environment at some later time.  

The complex summation ∑ 𝑒𝑖𝑖 ∑ 𝑠𝑗𝑗 ∑ 𝑝𝑘𝑘  

can be simplified into a product of measurable 

property values of individual entities/sensors if the 

possible numbers of property values of every 

entity/sensor combination is independent: 

𝑐𝑡𝑜𝑡 = ∏  

𝑏

𝑖=1

∏ 𝑛𝑖𝑗

𝑠𝑖

𝑗=1

                (2) 

where,  𝑛𝑖𝑗 = |{𝑝1, 𝑝2, … 𝑝𝑗}| is the number 

of property values as measured by the jth sensor of 

the ith entity. However, this upper limit is never 

reached in any system because regulatory 

interactions make multiple sensors/entities covary 

[3]. As a simple example, consider two sensors that 

activate each other in a Boolean network with no 

delay: the only possible values are {0,0} when both 

sensors are off and {1,1} when both sensors are on, 

because the mutual positive regulation precludes 

{0,1} and {1,0}. 

 Three simplifying assumptions were made 

to facilitate the simulation of regulatory networks 

with different architectures: (1) let the number of 

molecules be the only property measured by all 

sensors, (2) let each sensor be a single kind of 

molecule, and (3) let all entities be within the 

system. In these simple Entity-Sensor-Property 

(ESP) systems, the number of possible 

configurations is given by: 

𝑐𝑡𝑜𝑡 = ∑ 𝑒𝑖

𝐸

𝑖=1

(∑ 𝑛𝑗

𝑠𝑖

𝑗=1

)  < ∏  

𝐸

𝑖=1

∏ 𝑛𝑖𝑗

𝑠𝑖

𝑗=1

               (3) 

where, e is the measured entity (total E in the 

system), s is the measuring sensor (total si for ith 

entity), nj is the attainable and measurable numbers 

of the ith entity, and nij is the attainable and 

measurable numbers of the ith entity as measured by 

the jth sensor. In such simplified ESP systems, a 

sensor is simply an entity in the system that 

responds to changes in numbers of an entity by 

changing the numbers of that entity or another 

entity. Whether downstream changes occur depends 

on the sensitivity of the sensor and the step-size of 

changes in property value (i.e., number) of the 

downstream entity/sensor. 

A hybrid approach with deterministic and 

stochastic aspects was used to simulate ESP systems 

(e.g., Fig. 4A) represented by equation (3) with 

random values for the numbers of each 

entity/sensor, the sensitivity of each sensor (i.e., the 

change in number needed to change a downstream 

entity/sensor), the step-size of changes in property 

(i.e., numbers changed per input from a sensor), and 

the active fraction (i.e., proportion that are available 

for interactions at any time). Only an arbitrary 

fraction of each entity (fixed over time) was 

simulated as active to account for processes such as 

folding, localization, diffusion, etc., that can limit 

regulatory interactions. Simulations were begun 

with a total of 500 molecules. A maximal increase 

of 5,000 molecules was allowed per cell cycle 

before each cell division to account for depletion of 

precursors, reactants, or building blocks (which 

were not explicitly simulated). The simulation was 

ended if total number of simulated molecules 

increased beyond a maximal number (500,000 in 

Fig. 4) to account for the limited capacity of a cell. 

Thus, with each time step, the numbers of all 

entities/sensors changed deterministically based 

upon the randomly established initial regulatory 

architecture with stochastic changes in the numbers 

of each entity arising from the random order of 

evaluation at each time step and the reduction by 

~1/2 at the start of each cell cycle, which simulates 

experimentally observed noise (e.g., [23]). With 

these parameters, regulatory architectures were 

simulated and the relative concentration of each 

entity/sensor was plotted over time (Fig. 4A). These 

profiles represent the change in ‘phenotype’ over 

time and are akin to measurements of relative RNA 

abundance using RNA-seq [24] or relative protein 

abundance using proteomic approaches [25]. Thus, 



 

ESP systems represent networks or graphs with 

weighted edges (because of the different activities 

of different sensors needed for the transmission of 

each regulatory change), complex nodes (because of 

the multiple properties of each entity/sensor), and 

transmission delays (because of the variation in the 

duration of each regulatory interaction). Notably, 

the relative concentrations of an entity can change 

over time (e.g., ‘c’ in Fig. 4A) while the underlying 

regulatory architecture is preserved (see Fig. S10, 

Movie S1, section titled ‘Exploration of Simple ESP 

Systems’ in Supplementary Information, and run 

‘ESP_systems_single_system_explorer_v1.nlogo’ 

in NetLogo [26] for exploration). 

ESP systems differ in their susceptibility to 

heritable epigenetic changes 

Explorations of ESP systems revealed that 

some systems can be stable for a large number of 

cell divisions (or equivalently generations) before 

the level of an entity/sensor becomes zero (e.g., 

system-id 62795 was stable for 59,882.5 

generations (Fig. S11)). This long, yet finite 

duration of stability highlights the difficulty in 

claiming any architecture is heritable forever if one 

of its entities/sensors has low abundance and can be 

lost with a small probability. Systems responded to 

transient perturbations that reduce the levels of a 

randomly chosen entity/sensor in two major ways: 

Type I systems recovered relative levels of 

entities/sensors, and maintained the same regulatory 

architecture; Type II systems changed by losing one 

or more entities, resulting in new relative levels of 

entities/sensors, and new regulatory architectures 

that persisted for many subsequent generations. 

These two types were observed even when the 

numbers of some entities/sensors were changed by 

just 2-fold for a few generations (Fig. 4B versus Fig. 

4C). 

For systematic analysis, architectures that 

could persist for ~50 generations without even a 

transient loss of any entity/sensor were considered 

HRAs and perturbations (loss-of-function, gain-of-

function, or none) were delivered at five different 

times with respect to the start of the simulation (i.e., 

phases). For loss-of-function, the numbers of one 

randomly selected entity/sensor was held at half the 

minimal number of all entities/sensors for 2.5 

generations every 50 generations. This perturbation 

is like the loss of transcripts through RNA 

interference. For gain-of-function, the numbers of 

one randomly selected entity/sensor was held at 

twice the maximal number of all entities/sensors for 

2.5 generations every 50 generations. This 

perturbation is like overexpression of a particular 

mRNA or protein. Of 225,000 ESP systems thus 

simulated, 78,285 had heritable regulatory 

architectures that remained after 250 generations 

(system-ids and other details for exploration of 

individual systems are in Table S2). These 

persistent systems included entities/sensors with 

relative numbers that changed over time as well as 

those with nearly constant relative numbers. For 

each number of interactors considered (2 to 16), 

only a fraction of the regulatory architectures were 

stable, plateauing at ~50% of simulated systems 

with 10 or more entities/sensors (Fig. S12, top left). 

This plateau is likely owing to the limit set for the 

maximal number of molecules in the system 

because most systems with many positive 

regulatory links quickly reached this limit. 

Although systems began with up to 16 

entities/sensors, by the end of  250 generations, 

there was a maximum of ~8 entities/sensors and a 

median of ~4 entities/sensors in stable systems (Fig. 

S12, bottom left). Furthermore, an excess of positive 

regulatory links were needed to sustain a system 

with negative regulatory links (Fig. S12, right), with 

the minimal system that can sustain a negative 

regulatory interaction requiring three sensors, as 

expected. This bias reflects the inability of negative 

regulatory interactions alone to maintain regulatory 

architectures over time across cell divisions. 

Periodic rescue or perturbation can expand the 

variety of heritable regulatory architectures  

Since the relative abundance of each 

entity/sensor is expected to trace a transgenerational 

waveform [2] and to fluctuate with each time step, 

the relative timing of the perturbations (i.e., their 

phase) can impact the persistence of particular 

regulatory architectures. Specifically, 

entities/sensors with low numbers could be rescued 

from reaching zero by well-timed gain-of-function 

perturbations and those with high numbers could be 

rescued from arresting the simulation by well-timed 

loss-of-function perturbations. Therefore, the 

fractions of persistent ESP systems that showed 

heritable epigenetic change through loss of one or 

more entities were examined by starting with 2 to 

16 molecules for each phase and type of 

perturbation (Fig. 4D). As expected, only HRAs 



 

with a minimum of 3 entities/sensors at the start of 

the simulation showed heritable epigenetic changes. 

Fractions of HRAs showing heritable epigenetic 

changes were comparable across all perturbations 

for a given number of starting entities/sensors, with 

more such HRAs identified with increasing 

numbers of starting entities/sensors  (compare Fig. 

4D, top, middle, and bottom). The variations in the 

numbers identified for different phases of 

perturbation when starting with a particular number 

of entities/sensors was comparable to the variation 

observed in systems that were not perturbed 

(compare Fig. 4D, top with Fig. 4D, middle and 

bottom), suggesting that no particular phase is more 

effective. Although some architectures were 

unaffected by all perturbations, many showed an 

altered response based on both the nature and phase 

of the perturbations. Consider the behavior of the 

illustrative example defined by system-id 46357 

that begins with 5 entities/sensors (see Movie S2 to 

Movie S12). The unperturbed ESP system stabilizes 

with an architecture of 3 entities (of the type ‘E’ in 

Fig. 1) until ~74 generations, when one of the 

entities is lost and the new architecture (of the type 

‘A’ in Fig. 1) remains stable until ~286.5 

generations. However, perturbations yield a variety 

of different stabilities depending on phase and type 

of perturbation. Periodic loss-of-function 

perturbations with phase ‘0’, ‘3’, or ‘4’ resulted in 

stability of all 3 entities until collapse at ~130.5, 

~181.5, or ~99.5 generations, respectively. But, 

such perturbations with phase ‘1’ resulted in an 

earlier change from type ‘E’ to type ‘A’ with 

collapse at ~193.5 generations and with phase ‘2’ 

resulted in a later change from ‘E’ to ‘A’ with 

collapse at ~184.5 generations. On the other hand, 

periodic gain-of-function perturbations with phase 

‘0’, ‘1’, ‘2’, or ‘4’ prolonged the type ‘E’ 

architecture until ~306, ~253, ~212, or ~708 

generations, respectively, after which the new type 

‘A’ architecture persisted beyond 1000 generations, 

by when the simulation was ended. However, such 

perturbations with phase ‘3’ preserved the type ‘E’ 

architecture until collapse at ~311.5 generations. 

Collectively, these results reveal that the 

heritability of regulatory architectures that are 

intrinsically unstable can be enhanced through 

interactions that alter the regulation of one or more 

sensors. Such external regulators could be part of 

the environment (e.g., periodic interactions such as 

circadian signals) or other cells (e.g., periodic 

interactions with somatic cells for regulatory 

architectures transmitted along a germline).  

Organismal development can permit HRAs that 

incorporate interactions with somatic cells and 

intergenerational delays in regulation 

While for unicellular organisms, each cell 

division results in a new generation, for 

multicellular organisms, transmission of heritable 

information across generations occurs along a 

lineage of cells that can include many cell divisions 

with periods of quiescence and interactions with 

somatic cells. The nematode C. elegans is a well-

characterized multicellular organism [27] that has 

many features such as the early separation of the 

germline during development, sexual reproduction, 

and the generation of different somatic tissues (Fig. 

5A, top), that can be incorporated into simulations 

and are useful for generalization to other animals, 

including humans. For example, 14 cell divisions 

are necessary to go from the zygote of one 

generation to the zygote of the next (Table S3). The 

loading of oocytes with maternal molecules in 

multiple organisms makes one generation of delay 

in regulation (i.e., maternal regulation) common, 

but such ancestral effects could last longer in 

principle (e.g., grandparental effects are easily 

imagined in humans because oocytes begin 

developing within the female fetus of a pregnant 

woman). Indeed, studies on RNA silencing in C. 

elegans have revealed long delays in regulation 

within the germline. For example, parental rde-4 
can enable RNA silencing in adult rde-4(-) progeny 

[28]. Furthermore, loss of meg-3/-4 can result in 

persistent RNA silencing defects despite restoration 

of wild-type meg-3/-4 for multiple generations [29-

31]. However, examining the impact of such long 

delays and of interactions with somatic cells (e.g., 

[32]) is computationally expensive. Therefore, to 

simulate regulatory architectures that persist from 

one zygote to the next while satisfying some of the 

known constraints of C. elegans lineage and 

development, the ESP simulator was modified to 

incorporate the observed timings of cell division 

versus growth along the germline (Table S3, based 

on [33-38]) and allow a delay of up to 2 generations 

for the impact of a regulatory interaction (Fig. 5B).  

Since many genes expressed in the germline 

can be required for fertility or viability, the analysis 

of how they are regulated across generations poses 

a challenge. Following the behavior of a reporter 



 

across generations provides a proxy that can be used 

to understand transgenerational regulation in a 

relatively wild-type background (i.e., the tracer 

approach [1]). However, regulatory interactions that 

rely on the gene product will not be re-created by 

the reporter. For example, the mRNA sequence used 

to produce antisense small RNA of the gene will 

differ from that used for the reporter.  

To simulate the regulation of a germline 

gene and its reporter, a modified ESP system is 

required. In addition to a minimal positive feedback 

loop required for heritability, positive and negative 

regulators that depend on cis-regulatory sequences 

shared by both the gene and its reporter as well as 

such regulators that depend on the different 

products (e.g., the mRNA and/or protein of gene 

versus reporter) need to be simulated. Of the 10,000 

such ESP systems simulated, 11 maintained all 

entities/sensors for 10 generations (Table S4). A 

representative such system (Fig. 5C) forms a HRA 

that incorporates regulatory delays ranging from 0 

to 171 hours and can persist for hundreds of 

generations. Examining the levels of all 

entities/sensors over the first 10 generations (Fig. 

5D) reveals that despite starting at random values 

the HRA settles with a reproducible pattern during 

each generation (gen 2 onwards in Fig. 5D). The 

transgenerational waveforms traced by the relative 

numbers of all entities/sensors reveal periods of 

increased expression/activity for some 

entities/sensors during development (red asterisks 

in Fig. 5D), as observed for many genes expressed 

in the germline. Future studies that obtain data on 

key regulators with spatial and temporal resolution 

can be used to discriminate between different HRAs 

that drive the expression of different genes of 

interest. 

Differences in negative feedback acting across 

generations can explain the different durations 

of heritable RNA silencing in C. elegans 

The simple fact that organisms resemble 

their parents in most respects provides evidence for 

the homeostatic preservation of form and function 

across generations. Yet, this ‘transgenerational 

homeostasis’ [1] is overcome in some cases such 

that epigenetic changes persist for many generations 

(reviewed in [39]). Indeed, DNA methylation 

patterns of unknown origin are thought to have 

persisted for millions of years in the fungus C. 

neoformans [40]. Studies on RNA silencing in C. 

elegans (reviewed in [41]) provide strong evidence 

for heritable epigenetic changes in the expression of 

particular genes, facilitating analysis. When a gene 

expressed in the germline is silenced using double-

stranded RNA of matching sequence and/or 

germline small RNAs called piRNAs, the silencing 

can last from one or two generations to hundreds of 

generations [42-44]. The maintenance of RNA 

silencing across generations is thought to require a 

positive feedback loop formed by antisense small 

RNAs called 22G RNAs that are bound to the 

Argonaute HRDE-1 [45] and sense mRNA 

fragments processed into poly-UG RNAs (pUG 

RNAs) [46] that can act as templates for RNA-

dependent RNA polymerases that synthesize the 

22G RNAs. However, this mechanism does not 

explain the variety of effects that can arise when 

such genes with long-term silencing are exposed to 

other genes of matching sequence [42, 47]. For 

example, when a gene silenced by disrupting RNA 

regulation within the germline (iT, a transgene with 

silenced mCherry sequences) is exposed to genes 

with matching sequences (Fig. 6A, [42]), different 

outcomes are possible. After initial silencing in 

trans, the newly exposed genes can recover from 

silencing (mCherry and mCherry∆pi in Fig. 6A) 

when separated from the source of silencing signals, 

but can be either continually silenced (mCherry/iT 

in Fig. 6A) or become resistant to silencing 

(mCherry∆pi/iT in Fig. 6A) depending on the 

presence of intact piRNA-binding sequences 

despite the continued presence of the source. While 

this observation suggests that recognition of the 

target mRNA by piRNAs prolongs RNA silencing, 

loss of the Argonaute PRG-1 that binds piRNAs and 

regulates more than 3000 genes in the germline 

(e.g., [48]) also prolongs the duration of heritable 

RNA silencing [43]. Recent consideration of 

competition for resources in a populations of genes 

that are being silenced led to a theory based on 

Little’s law of queueing that can explain some 

observations on RNA silencing in C. elegans [49]. 

Specifically, assuming a pool of M silenced genes 

with an average duration of silencing of T, new 

silenced genes arise at a rate  given by M = T. 

However, this theory cannot predict which gene is 

silenced at any given time, why some genes are 

initially susceptible to silencing but subsequently 
become resistant (e.g., mCherry∆pi in Fig. 6A), and 

why the silencing of some genes can last for 

hundreds of generations. Thus, there is a need for 



 

understanding the origins of gene-specific 

differences in the dynamics of heritable epigenetic 

changes. 

22G RNAs and pUG RNAs are 

experimentally measurable molecular markers 

whose levels are thought to be proportional to the 

extent of gene silencing (e.g., [50-52]), although 

formally gene-specific regulatory features could 

influence this proportionality [53]. To understand 

how the activity of the underlying positive feedback 

loop that maintains the levels of these RNAs could 

relate to the extent of observed silencing, the 

HRDE-1-dependent loop was abstracted into a 

minimal positive feedback loop with 22G RNAs 

and pUG RNAs promoting each other’s production 

(Fig. 6B, top). Ordinary differential equations (Fig. 

6B, bottom) were developed for interdependent 

change in both RNAs by considering their rates of 

promotion (𝑘𝑥𝑦 for 22G and 𝑘𝑦𝑥 for pUG) and 

turnover (𝑇𝑥 for 22G and 𝑇𝑦 for pUG). All 

molecules and chemical modifications that are 

necessary to maintain a positive feedback loop are 

sensors because they need to transmit the change 

from an ‘upstream’ regulator to a ‘downstream’ 

regulator. This 22G-pUG positive feedback loop 

thus represents mutual promotion by two sensors 

(i.e., the HRA ‘A’ in Fig. 1). When any changed 

molecule or chemical modification is thus viewed 

as one component of a heritable regulatory 

architecture driven by a positive feedback loop, two 

criteria that impact the duration of epigenetic 

changes through the reduction of particular sensors 

are immediately suggested: (1) for every permanent 

change that is observed, all sensors that participate 

in the regulatory loop must be reduced to a level 

below that required for observing the change; and 

(2) for eventual recovery from a change, at least one 

sensor should be above the threshold required to 

drive the increase of all other sensors above their 

respective levels for observing the change. 

Consistently, a weak and brief reduction of 22G 

RNAs from steady state levels results in the 

eventual recovery of both 22G RNA and pUG RNA 

levels above the threshold required for them to be 

effective for silencing (Fig. 6C, left). Stronger (Fig. 

6C, middle) or longer (Fig. 6C, right) reductions can 

result in new steady-state levels for both RNAs that 

are below the threshold required for silencing.  

To obtain an analytic expression for how 

long heritable RNA silencing needs to be inhibited 

for eventual recovery, the impact of transient 

reduction in the activity of the 22𝐺-𝑝𝑈𝐺 positive 

feedback loop from steady state ([22𝐺]0 and 

[𝑝𝑈𝐺]0) was considered. Let 𝑑𝑥 . [22𝐺]0 or lower 

be insufficient for silencing, and let 22G RNAs be 

transiently perturbed to 𝑝. 𝑑𝑥 . [22𝐺]0  ≠ 0, where  

𝑑𝑥 < 1 and 𝑝 < 1. The critical duration (𝑡22𝐺) of 

such a perturbation for permanent reduction of 22G 

RNA below the level required for silencing is given 

by  

𝑡22𝐺 >
1

𝑇𝑦
𝑙𝑛 [

1
𝑑𝑥. 𝑝

− 1

(
1
𝑝 − 1) (

𝑇𝑦

𝑇𝑥
+ 1)

]                   (4) 

where 𝑇𝑥 and 𝑇𝑦 are the rates of turnover for 22G 

RNAs and pUG RNAs, respectively. Analogously, 

the critical duration (𝑡𝑝𝑈𝐺) of such a perturbation for 

permanent reduction of pUG RNA below the level 

required for silencing is given by  

𝑡𝑝𝑈𝐺 >
1

𝑇𝑥
𝑙𝑛 [

1
𝑑𝑦. 𝑝

− 1

(
1
𝑝 − 1) (

𝑇𝑥
𝑇𝑦

+ 1)
]                     (5) 

where 𝑑𝑦 . [𝑝𝑈𝐺]0 or lower is insufficient for 

silencing. Derivation of the general case for these 

equations (HRA ‘A’) is presented in supplementary 

information. These equations suggest that 

depending on the parameters of the architecture, 

different sensors may be more easily perturbed to 

cause heritable epigenetic changes. For example, for 

the same critical threshold below steady state (𝑑𝑥 = 

𝑑𝑦 = 0.5) and the same extent of perturbation (𝑝 =

 0.8), an architecture with [22𝐺]0 = 10, [𝑝𝑈𝐺]0  =
 7.14, 𝑇𝑥 =  0.05, 𝑇𝑦 =  0.1, 𝑘𝑥𝑦 =  0.07, 𝑘𝑦𝑥 =

 0.0714, is more quickly inhibited by reducing 22G 

RNAs than by reducing pUG RNAs (6.93 vs. 27.72 

units of time).  

Combining these considerations with the 

observations that both piRNA binding to target 

mRNAs (Fig. 6A) and loss of the piRNA-binding 

Argonaute PRG-1 [43, 44] prolong the duration of 

heritable RNA silencing suggests a unified 

mechanism that sets gene-specific durations of 

heritable RNA silencing. Specifically, the dynamics 

of recovery from silencing depends on the strength 

of an inhibitory feedback that can act across 

generations to reduce the HRDE-1-dependent 

positive feedback loop. This transgenerational 

inhibition relies on sensor(s) that are regulated by 



 

PRG-1 and is opposed by piRNA binding to the 

silenced mRNA (Fig. 6D).  

This proposed mechanism implies the 

existence of sensor(s) that respond to the activity of 

the HRDE-1-dependent positive feedback loop by 

recognizing one or more of the molecules and/or 

chemical modifications generated. Consistently, a 

chromodomain protein HERI-1 has been reported to 

be recruited to genes undergoing heritable RNA 

silencing and is required to limit the duration of the 

silencing [54]. Additional sensors are likely among 

the >3000 genes mis-regulated in animals lacking 

PRG-1 [43, 48]. The levels or activities of these 

sensor(s) could either increase or decrease in 

response to the activity of the HRDE-1-dependent 

loop depending on which of the multiple equivalent 

configurations of the negative feedback are present 

at different genes (expected to decrease in Fig. S13, 

left and right, but increase in Fig. S13, middle). 

However, in every case, the net result is a reduction 

in the activity of the HRDE-1-dependent loop (Fig. 

S12). Therefore, genes encoding such sensors could 

be among the genes that show increased mRNA 

levels (e.g., 2517 genes in [48]) and/or that show 

decreased mRNA levels (e.g., 968 genes in [48]) 

upon loss of PRG-1. Another set of genes that could 

encode similar sensors are those identified using 

repeated RNAi as modifiers of transgenerational 

epigenetic kinetics [55]. Regardless of the identities 

of the sensors, differences in the transgenerational 

feedback that reduces some component(s) of the 

22G-pUG positive feedback loop can explain the 

persistence of, recovery from, and resistance to 

heritable RNA silencing when different genes are 

targeted for silencing.  

In summary, experimental evidence and 

theoretical considerations suggest that the HRDE-1-

dependent positive feedback loop that generates 

22G RNAs and pUG RNAs is tuned by negative 

feedback that acts across generations to cause 

different durations of heritable RNA silencing. Such 

tuning can explain silencing for a few generations 

followed by recovery from silencing as well as 

resistance to silencing. Future studies are required 

for testing the quantitative predictions on the impact 

of reducing 22G RNA or pUG RNA levels (Eq. (4) 

and (5)) and for identifying the PRG-1-dependent 

genes predicted to have roles in the 

transgenerational inhibition of heritable RNA 

silencing (Fig. 6D).  

DISCUSSION 

The framework presented here establishes 

criteria for (1) heritable information in regulatory 

architectures, (2) the persistence of epigenetic 

changes across generations, (3) distinguishing 

between regulatory architectures using transient 

perturbations, (4) making unstable regulatory 

architectures in the germline heritable through 

interactions with somatic cells, and (5) generating 

epigenetic changes of defined magnitude and 

duration. 

ESP systems can be used to analyze many types 

of regulatory interactions  

The simple ESP systems simulated here 

(Fig. 4) can be extended to include a wide variety of 

properties to explore heritable epigenetic changes 

that can occur in cell/organelle geometry, phase 

separation, protein folding, etc. In general, each 

kind of molecule or entity can have multiple 

properties that are sensed by different sensors. For 

example, concentration, folded structure, primary 

sequence, and subcellular localization of a protein 

could each be measured by different sensors that 

respond by causing different downstream effects. If 

a protein (x) is regulated by three different 

regulators that each change its concentration (C), 

subcellular localization (L), or folded structure (F), 

then the protein x could be considered as having C, 

L, and F as values for its regulated properties. If the 

protein x in turn acts as a regulator that changes 

another entity y, then the activity of x regulating y 

could be simulated as a combined function of its 

concentration, localization and folded structure (i.e., 

activity of x = f(C, L, F)). Such simulations preserve 

both the independent regulation of different 

properties of a protein along with the potential 

equivalence in the activity of a higher concentration 

of partially folded proteins and a lower 

concentration of well-folded proteins. Thus, 

appropriate mapping onto an ESP system would 

enable the explanation of many phenomena in terms 

of regulatory architectures formed by any set of 

interactors while rigorously considering heritability.  

A positive feedback loop can only support the 

inheritance of one property of an entity  

While no entity can promote changes in all 

its properties by itself, some entities can promote 

changes in one of their properties through self-
regulatory interactions under some conditions. For 

example, prions can act as replicating stores of 



 

information that template changes in the 

conformation of other proteins with the same 

sequence [56], although other properties of prions 

such as their concentration, subcellular localization, 

rate of turnover, etc. are determined through 

interactions with other entities/sensors. Such self-

regulatory interactions for the control of some 

properties can be considered by allowing self-

referential loops. Specifically, if the protein x above 

were a prion, then its properties will include C, L, 

and F as above, with the value of F changing with 

time as a function of both concentration and prior 

proportion folded (i.e., F(t+1) = g(C, F(t))). Similar 

considerations underscore that any one positive 

feedback loop can promote only one property of an 

entity and not all of its properties. For example, 

consider small RNAs that are associated with gene 

silencing in C. elegans. The targeting of a gene by 

small RNAs could be preserved in every generation 

through a regulatory loop whereby recognition of 

mRNA by antisense small RNAs results in the 

production of additional small RNAs by RNA-

dependent RNA Polymerases. However, the mere 

existence of this feedback loop cannot explain the 

different concentrations of small RNAs targeting 

different genes [50] or the different durations of 

persistent small RNA production when initiated 

experimentally [42]. Similar considerations apply 

for chromatin modifications, DNA modifications, 

RNA modifications, and all other ‘epigenetic 

marks’. 

Mutability of epigenetic information changes 

non-monotonically with complexity  

Inducing heritable changes in epigenetic 

information is more challenging than inducing 

similar changes in genetic information [2]. 

Chemically altering a single molecule (typically 

DNA) is sufficient for inducing a genetic change, 

however, similarly altering one entity of a 

regulatory architecture (say, a protein) to induce an 

epigenetic change requires simultaneously altering 

the many copies of that entity without altering DNA 

sequence. All DNA bases with induced chemical 

changes are deleted or converted into one of the 

other bases by the replication and repair pathways. 

As a consequence, only 6 different base exchanges 

are possible in DNA sequence through a single 

mutation, but even when only up to three interactors 

are considered, 61 different HRA changes are 

possible through a single mutation (Fig. 3). 

Importantly, after a heritable change, the DNA 

sequence remains similarly mutable, but the impact 

of a change (genetic or epigenetic) on subsequent 

mutability of a regulatory architecture could 

increase or decrease. Consider a change that 

incorporates a new transcription factor into a 

regulatory architecture. If it is an activator, it could 

promote the expression of many genes leading to the 

incorporation of more RNAs and proteins into the 

regulatory architecture. Conversely, if it is a 

repressor, it could repress the expression of many 

genes leading to the removal of RNAs and proteins 

from the regulatory architecture. Either of these 

consequences could make the entire architecture 

more robust such that drastic perturbation is needed 

to cause observable change. When such robust 

architectures occur during development, the identity 

of a cell could become relatively fixed and heritable 

through cell divisions and yet remain compatible 

with specific natural [57] and/or induced [58] cell 

fate transformations. Thus, such cell fate 

determination reflects the acquisition of different 

robust states, providing the appearance of a cell 

‘rolling down an epigenetic landscape’ [59].  

Complexity of heritable regulatory architectures 

Despite imposing heritability, regulated 

non-isomorphic directed graphs soon become much 

more numerous than unregulated non-isomorphic 

directed graphs as the number of interactors 

increase (125 vs. 5604 for 4 interactors, Table 1). 

With just 10 interactors, there are >3x1020 

unregulated non-isomorphic directed graphs [60] 

and HRAs are expected to be more numerous. This 

tremendous variety highlights the vast amount of 

information that a complex regulatory architecture 

can represent and the large number of changes that 

are possible despite sparsity of the change matrix 

(Fig. 3). This number is potentially a measure of 

epigenetic evolvability – the ability to adapt and 

survive through regulatory change without genetic 

mutations. However, architectures made up of 

numerous interactors that are all necessary for the 

positive feedback loop(s) required for transmitting 

information across generations are more vulnerable 

to collapse (e.g., ‘C’ and ‘T’ in Fig. 1). Furthermore, 

spatial constraints of the bottleneck stage (one cell 

in most cases) presents a challenge for the robust 

transmission of regulatory information. A 

speculative possibility is that complex architectures 

are compressed into multiple smaller positive 



 

feedback loops for transmission between 

generations with the larger HRAs being re-

established through interactions between the 

positive feedback loops in every generation. 

Examples of such numerous but small positive 

feedback loops include small RNA-mediated, 

chromatin-mediated, and prion-mediated loops that 

specify the identity of genes for particular forms of 

regulation in the next generation. However, 

determining how the rest of the regulatory 

information is transmitted in each case and whether 

such compression with redundancy is a general 

principle of heredity require further study. 

Information Density in Living Systems 

Individual entities transmitted across 

generations can be considered as carrying part of the 

heritable information if such information is always 

seen in the context of the sensors that interact with 

the entity. While the maximal information that can 

be carried by DNA sequence is a product of its 

length (l) and the number of bits contributed by each 

base (2l = log2[4].l), the maximal number of 

relevant bits contributed by any entity - including 

the genome - depends on the number of states 

sensed by all interacting sensors (for ith entity = 

log2(∑ 𝑠𝑗
𝑠𝑖
𝑗=1 (∑ 𝑝𝑘

𝑝𝑗

𝑘=1 )) from equation (1)) [3]. The 

genome likely interacts with the largest number of 

sensors per molecule, making it the entity with the 

most information density. When a gene sequence is 

transcribed and translated, sequence information is 

transmitted from one molecule (DNA) to many 

(RNA(s) and/or protein(s)), thereby reducing the 

density of sequence information per entity (e.g., 

RNA or protein of a particular sequence). However, 

information is also added to these entities through 

the process of RNA folding and protein folding, 

which depend on interactions with the surrounding 

chemical and physical context (e.g., [61]). The 

resultant structural (and potentially catalytic) 

specialization of RNAs and proteins provides them 

with additional properties that are relevant for other 

sensors, thereby increasing their information 

content beyond that in the corresponding genome 

sequence. Importantly, these proteins and RNAs 

can interact to create molecular complexes and 

organelles that again concentrate information in 

higher-order entities present as fewer copies within 
cells (e.g., centrosomes). Such complexes and 

organelles therefore are entities with high 

information density. In this view, the information 

density throughout a bottleneck stage connecting 

two generations (e.g., the single-cell zygote) is non-

uniform and ranges from entities with very high 

density (e.g., the genome) to those with very low 

density (e.g., water). Beginning with the simplest of 

regulatory architectures (Fig. 1), progressive 

acquisition of entities and their interacting sensors 

would lead to the incorporation of regulators with 

increasing information density. An entity that is 

connected to a large number of sensors that each 

respond to changes in a fraction of its properties can 

appear to be the chief ‘information carrier’ of the 

living system (e.g., DNA in cells with a genome). 

Thus, as heritable regulatory architectures evolve 

and become more complex, entities with a large 

number of sensed properties can appear central or 

controlling (see [62, 63] for similar ideas). This 

pathway for increasing complexity through 

interactions since before the origin of life outlines 

how any form of high-density information storage 

can be used to construct what appears to be the key 

information carrier in a living system – a new kind 

of DNA for a new kind of life. 

 

METHODS SUMMARY 

Software. All calculations were performed by hand 

or using custom programs in Python (v. 3.8.5), 

and/or R (v. 3.6.3). Simulations and analyses were 

performed using NetLogo (v. 6.1.1), Python (v. 

3.8.5), and/or R (v. 3.6.3). Transitions between 

HRAs were depicted using the circular layout 

plugin in Gephi (v. 0.10.1 202301172018). 

Analysis of heritable regulatory architectures. 

The possible weakly connected non-isomorphic 

graphs that form regulatory architectures capable of 

indefinite persistence and the maximal information 

that can be stored using them (log2N) were 

calculated. Systems of ordinary differential 

equations (ODEs) were used to describe the rate of 

change for each interacting entity (𝑥, 𝑦, 𝑧) in each of 

the 26 heritable regulatory architectures (A to Z) 

with the relative amounts of all entities at any time 

defined as the ‘phenotype’ at that time. Each 

regulatory architecture is characterized by a 

maximum of 9 parameters in addition to the relative 

amounts of each entity: a rate of turnover for each 

entity (3 total; 𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧) and rates for each 

regulatory interaction between entities (6 total; e.g., 

𝑘𝑥𝑦 is the regulatory input to 𝑥 from 𝑦, 𝑘𝑦𝑧 is the 

regulatory input to 𝑦 from 𝑧, etc.). Relative amounts 



 

of each interacting entity for each architecture at 

steady state (𝑥0, 𝑦0, 𝑧0) were determined by setting 

all rate equations to zero, which results in 

constraints on the variables for each architecture 

(e.g., for A: 𝑦0 =  𝑥0.
𝑇𝑥

𝑘𝑥𝑦
= 𝑥0.

𝑘𝑦𝑥

𝑇𝑦
; for B: 𝑦0 =

 𝑥0.
𝑇𝑥

𝑘𝑥𝑦
= 𝑥0.

𝑘𝑦𝑥

𝑇𝑦
; 𝑧0 =  𝑥0.

𝑇𝑥

𝑘𝑥𝑦
.

𝑘𝑧𝑦

𝑇𝑧
, etc. See 

supplemental methods for the steady-state 

constraints for all architectures). These constraints 

were used to obtain a total of 128,015 parameter sets 

(𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧 , 𝑘𝑥𝑦 , 𝑘𝑦𝑧 , etc.) that are compatible with 

steady state for each architecture (Table S1). 

Particular parameter sets were then used to illustrate 

the consequences of genetic and epigenetic changes 

in all architectures (Fig. 2 and Figs. S3 – S9). The 

simpler expressions for steady-state levels for all 

regulatory architectures when there are no turnover 

mechanisms for any entities and the only ‘turnover’ 

occurs by dilution upon cell division (𝑇 =  𝑇𝑥 =
 𝑇𝑦 =  𝑇𝑧) were derived (see supplementary 

information). Expressions for steady state values 

when all entities are lost at a constant rate to 

complex formation (𝛾) and for changes upon 

complete loss of an entity were also derived (see 

supplementary information).  

The impacts of transient perturbations from 

steady state were examined for each architecture to 

identify conditions for heritable epigenetic change 

by defining thresholds (𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧) for observing a 

defect for each entity (e.g., for the function of 𝑥, 

𝑑𝑥 . 𝑥0 is not sufficient, when 𝑑𝑥 < 1, or 𝑑𝑥 . 𝑥0 is in 

excess, when 𝑑𝑥 > 1). Responses after 

perturbations are illustrated for all architectures 

(Figs. S3 to S9) and cases where genetic and 

epigenetic perturbations result in distinct responses 

are highlighted (Fig. 2). The duration and extent of 

perturbation needed for heritable epigenetic 

changes were explored using numerical solutions of 

the equations describing the dynamics of each 

regulatory architecture. Explorations of 22G-pUG 

positive feedback loop were similarly performed by 

simulating a type ‘A’ HRA using ODEs (Fig. 6). 

Analytical expressions for conditions that enable 

heritable epigenetic change were derived for the 

simplest heritable regulatory architecture where two 

entities (𝑥 and 𝑦) mutually promote each other’s 

production. Transitions between HRAs (Fig. 3) 

were worked out manually by considering the 

consequence of each change from steady state for 

each HRA.  

Analysis of entity-sensor-property systems. 

Simple ESP systems were simulated using custom 

programs in NetLogo [26](details are available 

within the ‘code’ and ‘info’ tabs of each program). 

Results from systematic explorations obtained by 

running NetLogo programs from the command line 

(i.e., ‘headless’) were analyzed using R (e.g., Fig. 

4D, Fig. S12). The developmental timing of cell 

division is C. elegans were curated manually from 

the literature (Table S3) and used to simulate ESP 

systems that incorporate this developmental timing 

and temporal delays in regulation (Fig. 5). 

Supplementary movies (Movie S1 – S13) were 

made by recording screen captures of NetLogo runs 

using QuickTime Player.  

Data availability 

All programs used in this study (written in NetLogo 

(v. 6.1.1), Python (v. 3.8.5), and/or R (v. 3.6.3)) are 

available at https://github.com/AntonyJose-

Lab/Jose_2023. 
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TABLES, FIGURES, AND FIGURE LEGENDS 

Entities Heritable Regulated Heritably regulated Bits of information 

1 0 0 0 - 

2 1 3 1 0 

3 7 96 25 4.64 

4 125 19559 5604 12.45 

Table 1. Capacity of heritable regulatory architectures to store information. The number of heritable, 

regulated, and heritably regulated architectures, and the information they can store were calculated using a 

program that enumerates non-isomorphic weakly connected graphs that satisfy specified criteria 

(‘Heritable_Regulatory_Architectures_1-4_entities.py’). 

 

 

 

Figure 1. The simplest heritable regulatory architectures. Of the 99 possible regulatory architectures 

with fewer than four entities (see Fig. S2), only 26 can be indefinitely heritable (A through Z with x, y, and 

z entities/sensors). Entities that act as sensors (black circles) or that do not provide any regulatory input 

(blue circles), positive (green arrows) and negative (magenta bar) regulatory interactions are indicated. 
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Figure 2. Epigenetic and genetic changes can provide complementary information about heritable 

regulatory architectures. (A to H) In each panel, cases where specific perturbations of architectures (top 
left) characterized by sets of parameters that support a steady state (bottom left) result in different outcomes 

for permanent or genetic (middle) versus transient or epigenetic (right) changes are illustrated. Relative 

concentrations of each entity during periods of steady state (thick grey line), the point of genetic change 
(red arrow), periods of epigenetic reduction (red bar, for a duration tp = 5 (a.u); with the threshold for 

observing a defect d = 0.5; and an extent of perturbation beyond the threshold p = 0.5), and periods of 



 

recovery after perturbation (thin grey line) are shown. Architectures are depicted as in Figure 1 (A, B, C, 

D, E, F, G, and H depict the heritable regulatory architectures A, G, P, R, W, X, Y and Z, respectively) with 

transient reductions in an entity or sensor and associated interactions depicted using lighter shades. Dotted 

lines indicate unregulated turnover (in middle) or thresholds for observing defects upon reduction in levels 

of an entity/sensor (in right). 

 

 

 

Figure 3. Possible conversions between the simplest heritable regulatory architectures. Table 

summarizing the possible changes in regulatory architecture observed after a single perturbation from 

steady state (blue, loss of a regulatory interaction; orange, change in the polarity of a regulatory interaction; 

black, either change in regulatory interaction and/or loss of an entity). For example, Z can arise from P 

through the loss of a regulatory interaction or from W through a change in the polarity of a regulatory 

interaction. Bottom left, Network diagram summarizing possible changes arranged clockwise by frequency 

of change to the HRA (color-matched numbers). Edges (black, blue, or orange) are colored as in table and 

nodes are colored according to number of adjacent HRAs.  



 

 

Figure 4. Regulatory architectures can be simulated as entity-sensor-property systems to examine 

how they persist or change in response to transient perturbations. (A) An ESP system illustrating the 

stability of a regulatory architecture despite changes in the relative numbers of the interactors 

(entities/sensors) over time. Left, Simulation of an ESP system showing how interacting molecules create 

regulatory architectures. This system consists of four entities (a, b, c, d), where ‘d’ and ‘a’ are also sensors. 

Each sensor (red) sends regulatory input (grey, positive or black, negative) to increase or decrease another 

sensor or entity (blue). Numbers of each entity (i.e., its property value) change in fixed steps per unit time. 

The number of sensors needed to cause one unit of change in property differs for each regulatory input 

(lower number = thicker line, representing lower threshold for downstream change). Each entity is depicted 

with property step, active fraction, and number at the start of the first generation (gen 1) and at the end of 

the third generation (gen 3). Right, The relative numbers of the entities, which can be together considered 

as ‘phenotype’, can change over time. Note that relative amounts of ‘a’, ‘b’, or ‘d’ remain fairly constant, 

but that of ‘c’ changes over time. (B and C) ESP systems can differ in their response to epigenetic change. 

Top, ESP systems are depicted as in A. Bottom, Relative abundance of each entity/sensor (different colors)  

or ‘phenotype’ across generations. Blue bars = times of epigenetic perturbation (reduction by two fold). In 

response to epigenetic perturbation that lasts for a few generations, Type I systems recover without 

complete loss of any entity/sensor (B) and Type II systems change through loss of an entity/sensor (C). (D) 

ESP systems of varying complexity can show heritable epigenetic changes, depending on when the system 

is perturbed. The numbers of randomly chosen entities were unperturbed (none, top), reduced to half the 

minimum (loss of function), or increased to twice the maximum (gain of function, bottom) every 50 

generations for 2.5 generations and the number of systems responding with a new stable regulatory 

architecture that lasts for >25 generations were determined. Perturbations were introduced at each of five 

different time points with respect to the starting generation (phase - 0,1,2,3,4). Of the 78,285 stable systems, 

14,180 showed heritable epigenetic change. 

 



 

 

 

Figure 5. ESP systems that incorporate the timings of cell division during C. elegans development  

and temporal delays in regulatory interactions can recreate periods of increased expression in every 

generation. (A) Top, Schematic of cell divisions between two successive generations of C. elegans. Cells 

that maintain the intergenerational continuity through cell divisions (magenta, germline), cells that cannot 

contribute to the next generation through cell divisions (white, soma) but arise in each generation (gen x 

and gen x+1) from the bottleneck stage, and the interactions between these two cell types (red line) are 

depicted. Bottom, Experimentally determined timing of cell division (1) versus growth (0) from one zygote 

to the next in C. elegans in 15 minute intervals ( = 1 time step in simulations), which give a generation time 

of ~91.25 hours ( = 365 time steps). See Table S3 for the relative timing of cell divisions based on past 

studies. (B) Key control features for simulating HRAs that incorporate organismal timing of cell divisions 

and temporal delays in regulation. In addition to controls used in the single system explorer (Fig. S10A), 

the following sliders were added: one to set the number of generations of ancestors that can contribute 

regulation (ancestral-effect-generations, e.g., 2 for parental effects), one to set the probability of the 

regulatory origin for each interaction from one of the two sensors that form the positive feedback loop 

required for heritability (cyc1-vs-cyc2), and one to set the probability of the gene of interest being a sensor 

providing regulatory input into the positive feedback loop instead of an entity (gene-is-sensor). Monitors 

that show the current generation and the total number of molecules, and an input to set the system-id were 

also added.  (C) Representative simulated HRA that incorporates temporal delays and the characteristic 

timings of cell divisions in C. elegans. Different types of positive (+) and negative (-) regulators (red) that 

depend on cis-regulatory sequences (+s and -s, e.g., transcription factors), and that depend on the gene 

product (+p and -p for gene and reporter, e.g., small RNAs made using mRNA template, chaperones that 

promote the folding of the protein, etc.) are depicted with color coded arrows (+, grey and -, black). 

Different relative delays in regulation (hours on arrows, maximum of 2x generation time to allow for the 

widely observed parental regulation) are also depicted. The unknown components of the core positive 

feedback loops required for heredity were simulated as two sensors that promote each other’s production 



 

in addition to the production of all other entities/sensors. (D) Relative concentrations of entities/sensors 

regulated by the HRA in (C) over 10 generations showing transgenerational waveforms. Properties, active 

fractions, relative numbers, and regulatory interactions were considered and relative numbers of each 

entity/sensor depicted as in Fig. 4 with colors as in (C). Although the simulation began with random 

numbers for all entities/sensors, the HRA settles into a reproducible pattern within two generations with 

periods of increased relative concentrations for some entities/sensors in every generation (red asterisks). 

Also see Movie S13.  



 

 

Figure 6. Regulation of a positive feedback loop can explain the magnitude and duration of 

experimentally observed heritable RNA silencing. (A) Experimental evidence from C. elegans for 

susceptibility to, recovery from, and resistance to trans silencing by a silenced gene (adapted from [42]). 

Left, Schematic of experiment showing a gene silenced for hundreds of generations by mating-induced 

silencing (iT = mex-5p::mCherry::h2b::tbb-2 3’ utr::gpd-2 operon::gfp::h2b::cye-1 3’ utr) exposed to 

genes with matching sequences (mCherry and mCherry∆pi, i.e., mCherry without piRNA binding sites) to 

initiate trans silencing. Right, Dynamics of heritable RNA silencing showing the initial exposure to trans 

silencing by iT (F1 generation), subsequent recovery after separation from iT (‘mCherry since F2’ and 

‘mCherry∆pi since F2’), resistance to silencing by iT (iT/mCherry∆pi), or persistence of silencing by iT 

(iT/mCherry). Fractions of animals that recover mCherry or mCherry∆pi expression (fraction unsilenced) 

are depicted with error bars eliminated for simplicity. (B) Abstraction of the HRDE-1-dependent positive 

feedback loop required for the persistence of RNA silencing. Top, Representation of the mutual production 

of RNA intermediates (22G and pUG) with rates of production (kyx and kxy) and turnover (Tx and Ty). 

Bottom, Ordinary differential equations for the rates of change of pUG RNAs (pUG) and 22G RNAs (22G). 

See text for details. (C) Impact of transient epigenetic perturbations on subsequent activity of a positive 

feedback loop. Left, response to a brief and weak reduction in the levels of one sensor (22G) of the positive 

feedback loop. The steady-state levels after recovery were above the threshold required for a silencing effect 

(dotted lines). Steady states ([22𝐺]0 and [𝑝𝑈𝐺]0), perturbation level (𝑝. 𝑑𝑥 . [22𝐺]0), and levels required 

for silencing (𝑑𝑥 . [22𝐺]0 and 𝑑𝑦 . [𝑝𝑈𝐺]0) are indicated. Middle and Right, Stronger (middle) or longer 

(right) reduction can result in steady-state levels after recovery being below the threshold required for a 

silencing effect (dotted lines). (D) Deduced regulatory architecture that explains data shown in (A) by 

including enhancement of silencing by piRNA binding on target mRNA and a gene-specific inhibitory loop 

that can act across generations through as yet unidentified sensor(s). Prolonged silencing in prg-1(-) animals 

[43] suggests that these sensor(s) are among the genes mis-regulated in prg-1(-) animals (e.g., [48]). See 

Fig. S13 for depictions of additional equivalent architectures.  
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SUPPLEMENTARY METHODS 

Analysis of simple heritable regulatory architectures. For each of the 26 heritable regulatory 
architectures (A-Z), let 𝑥, 𝑦, and 𝑧 be three entities. The dynamics of each architecture are 
described below by systems of ordinary differential equations that can be used to derive other 
equations and inequalities of interest. 
Steady-state relationships. At steady state, each architecture results in relative amounts of each 
entity (𝑥!, 𝑦!, 𝑧!) that could define a ‘phenotype’. These relative concentrations can be derived by 
setting the rate of change of all entities to zero. The equations for each architecture and the 
relationships that arise at steady state are derived below. 
Heritable Regulatory Architecture A: 

�̇� = 𝑘"# . 𝑦 − 𝑇" . 𝑥 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

where, 𝑘"# is the rate constant for the production of 𝑥 promoted by 𝑦; 𝑘#" is the rate constant for 
the production of 𝑦 promoted by 𝑥; 𝑇" is the rate of turnover of 𝑥 ; and 𝑇# is the rate of turnover 
of 𝑦. 

i.e., �̇� = 𝐴. 𝑋, where �̇� = -�̇��̇�.; A = -
−𝑇" 𝑘"#
𝑘#" −𝑇#

.; 𝑋 = /
𝑥
𝑦0 

At steady state, 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 = 0 

𝑘#" . 𝑥 − 𝑇# . 𝑦 = 0 

i.e., 𝐴. 𝑋 = 0, where A = -
−𝑇" 𝑘"#
𝑘#" −𝑇#

.; 𝑋 = /
𝑥!
𝑦!0, which has solutions that satisfy: 

𝑥!
𝑦!
=
𝑘"#
𝑇"

=
𝑇#
𝑘#"

 

Similar equations for steady state and the resulting solutions for the other heritable regulatory 
architectures are below. 
Heritable Regulatory Architecture B: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 + 0. 𝑧 = 0 

0. 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇"
𝑘"#

= 𝑥!.
𝑘#"
𝑇#

 



 

𝑧! =	𝑥!.
𝑇"
𝑘"#

.
𝑘$#
𝑇$

 

Heritable Regulatory Architecture C: 

−𝑇" . 𝑥 + 𝑘#" . 𝑦 + 0. 𝑧 = 0	

0. 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 

𝑘$" . 𝑥 + 0. 𝑦	−	𝑇$ . 𝑧 = 0 
which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇"
𝑘"#

= 𝑥!.
𝑘#$
𝑇#

.
𝑘$"
𝑇$

 

𝑧! =	𝑥!.
𝑘$"
𝑇$

 

Heritable Regulatory Architecture D: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 + 0. 𝑧 = 0 

𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇"
𝑘"#

= 𝑥!.
𝑘#"
𝑇#

 

𝑧! =
𝑥!
𝑇$
. 4𝑘$" + 𝑘$# .

𝑘#"
𝑇#
5 

Heritable Regulatory Architecture E:   

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 + 0. 𝑧 = 0 

−𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇"
𝑘"#

= 𝑥!.
𝑘#"
𝑇#

 

𝑧! =
𝑥!
𝑇$
. 4−𝑘$" + 𝑘$# .

𝑘#"
𝑇#
5 

Heritable Regulatory Architecture F: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 



 

0. 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇"
𝑘"#

 

𝑧! =	𝑥!.
𝑇"
𝑘"#

.
𝑘$#
𝑇$

=	
𝑥!
𝑘#$

. 4𝑇# .
𝑇"
𝑘"#

− 𝑘#"5 

Heritable Regulatory Architecture G: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 − 𝑘#$ . 𝑧 = 0 

0. 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇"
𝑘"#

 

𝑧! =	𝑥!.
𝑇"
𝑘"#

.
𝑘$#
𝑇$

=	
𝑥!
𝑘#$

. 4𝑘#" − 𝑇# .
𝑇"
𝑘"#

5 

Heritable Regulatory Architecture H: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 𝑘"$ . 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 − 0. 𝑧 = 0 

0. 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑘#"
𝑇#

 

𝑧! =	𝑥!.
𝑘#"
𝑇#

.
𝑘$#
𝑇$

=	
𝑥!
𝑘"$

. 4𝑇" − 𝑘"# .
𝑘#"
𝑇#
5 

Heritable Regulatory Architecture I: 
 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 − 𝑘"$ . 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 − 0. 𝑧 = 0 

0. 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑘#"
𝑇#

 



 

𝑧! =	𝑥!.
𝑘#"
𝑇#

.
𝑘$#
𝑇$

=	
𝑥!
𝑘"$

. 4𝑘"# .
𝑘#"
𝑇#

−	𝑇"5 

Heritable Regulatory Architecture J: 

−𝑇" . 𝑥 − 𝑘"# . 𝑦 + 𝑘"$ . 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 − 0. 𝑧 = 0 

0. 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑘#"
𝑇#

 

𝑧! = 𝑥!.
𝑘#"
𝑇#

.
𝑘$#
𝑇$

=	
𝑥!
𝑘"$

. 4𝑘"# .
𝑘#"
𝑇#

+	𝑇"5 

Heritable Regulatory Architecture K: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 

𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇"
𝑘"#

 

𝑧! =
𝑥!
𝑇$
. 4𝑘$# .

𝑇"
𝑘"#

+	𝑘$"5 = 	
𝑥!
𝑘#$

. 4𝑇# .
𝑇"
𝑘"#

− 𝑘#"5 

Heritable Regulatory Architecture L:  

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 

𝑘$" . 𝑥 − 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! = 𝑥!.
𝑇"
𝑘"#

 

𝑧! =
𝑥%
𝑇$
. 4𝑘$" −	𝑘$# .

𝑇"
𝑘"#

5 = 	
𝑥!
𝑘#$

. 4𝑇#
𝑇"
𝑘"#

−	𝑘#"5 

 
Heritable Regulatory Architecture M: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	



 

𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 

−𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇"
𝑘"#

 

𝑧! =
𝑥!
𝑇$
. 4	𝑘$# .

𝑇"
𝑘"#

− 𝑘$"5 = 	
𝑥!
𝑘#$

. 4𝑇#
𝑇"
𝑘"#

−	𝑘#"5 

Heritable Regulatory Architecture N: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 − 𝑘#$ . 𝑧 = 0 

𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇"
𝑘"#

 

𝑧! =
𝑥!
𝑇$
. 4	𝑘$# .

𝑇"
𝑘"#

+ 𝑘$"5 = 	
𝑥!
𝑘#$

. 4𝑘#" −	𝑇#
𝑇"
𝑘"#

5 

Heritable Regulatory Architecture O: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

−𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 

𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇"
𝑘"#

 

𝑧! =
𝑥!
𝑇$
. 4	𝑘$# .

𝑇"
𝑘"#

+ 𝑘$"5 =
𝑥!
𝑘#$

. 4𝑘#" +	𝑇#
𝑇"
𝑘"#

5 

 

Heritable Regulatory Architecture P: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

−𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 

𝑘$" . 𝑥 − 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 



 

𝑦! =	𝑥!.
𝑇"
𝑘"#

 

𝑧! =
𝑥!
𝑇$
. 4	𝑘$" − 𝑘$# .

𝑇"
𝑘"#

5 = 	
𝑥!
𝑘#$

. 4𝑘#" +	𝑇#
𝑇"
𝑘"#

5 

Heritable Regulatory Architecture Q: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 − 𝑘#$ . 𝑧 = 0 

𝑘$" . 𝑥 − 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇"
𝑘"#

 

𝑧! =
𝑥!
𝑇$
. 4	𝑘$" − 𝑘$# .

𝑇"
𝑘"#

5 = 	
𝑥!
𝑘#$

. 4𝑘#" −	𝑇#
𝑇"
𝑘"#

5 

Heritable Regulatory Architecture R: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 − 𝑘#$ . 𝑧 = 0 

−𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! = 𝑥!.
𝑇"
𝑘"#

 

𝑧! =
𝑥!
𝑇$
. 4	𝑘$# .

𝑇"
𝑘"#

− 𝑘$"5 = 	
𝑥!
𝑘#$

. 4𝑘#" −	𝑇#
𝑇"
𝑘"#

5 

Heritable Regulatory Architecture S: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 0. 𝑧 = 0	

−𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 

−𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇"
𝑘"#

 

𝑧! =
𝑥!
𝑇$
. 4	𝑘$# .

𝑇"
𝑘"#

− 𝑘$"5 = 	
𝑥!
𝑘#$

. 4𝑘#" + 𝑇#
𝑇"
𝑘"#

5 

Heritable Regulatory Architecture T: 



 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 + 𝑘"$ . 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 

𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇" . 𝑇$ −	𝑘$" . 𝑘"$
𝑘"# . 𝑇$ + 𝑘$# . 𝑘"$

 

𝑧! = 𝑥!.
𝑇" . 𝑇# − 𝑘"# . 𝑘#"	
𝑘"# . 𝑘#$ +	𝑇# . 𝑘"$

 

 
Heritable Regulatory Architecture U: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 − 𝑘"$ . 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 

𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇" . 𝑇$ +	𝑘$" . 𝑘"$
𝑘"# . 𝑇$ − 𝑘$# . 𝑘"$

 

𝑧! = 𝑥!.
𝑇" . 𝑇# − 𝑘"# . 𝑘#"	
𝑘"# . 𝑘#$ −	𝑇# . 𝑘"$

 

 

Heritable Regulatory Architecture V: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 − 𝑘"$ . 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 − 𝑘#$ . 𝑧 = 0 

𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇" . 𝑇$ +	𝑘$" . 𝑘"$
𝑘"# . 𝑇$ − 𝑘$# . 𝑘"$

 

𝑧! = 𝑥!.
𝑘"# . 𝑘#" − 𝑇" . 𝑇#
𝑘"# . 𝑘#$ +	𝑇# . 𝑘"$

 

 
Heritable Regulatory Architecture W: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 − 𝑘"$ . 𝑧 = 0	

𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 



 

𝑘$" . 𝑥 − 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇" . 𝑇$ +	𝑘$" . 𝑘"$
𝑘"# . 𝑇$ + 𝑘$# . 𝑘"$

 

𝑧! = 𝑥!.
𝑇" . 𝑇# − 𝑘"# . 𝑘#"	
𝑘"# . 𝑘#$ −	𝑇# . 𝑘"$

 

 
Heritable Regulatory Architecture X: 

−𝑇" . 𝑥 − 𝑘"# . 𝑦 + 𝑘"$ . 𝑧 = 0	

−𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 

𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇" . 𝑇$ −	𝑘$" . 𝑘"$
𝑘$# . 𝑘"$ − 𝑘"# . 𝑇$

 

𝑧! = 𝑥!.
𝑇" . 𝑇# − 𝑘"# . 𝑘#"	
	𝑇# . 𝑘"$ − 𝑘"# . 𝑘#$

 

Heritable Regulatory Architecture Y: 

−𝑇" . 𝑥 − 𝑘"# . 𝑦 + 𝑘"$ . 𝑧 = 0	

−𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 

−𝑘$" . 𝑥 + 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 

𝑦! =	𝑥!.
𝑇" . 𝑇$ + 𝑘$" . 𝑘"$
𝑘$# . 𝑘"$ − 𝑘"# . 𝑇$

 

𝑧! = 𝑥!.
𝑇" . 𝑇# − 𝑘"# . 𝑘#"	
	𝑇# . 𝑘"$ − 𝑘"# . 𝑘#$

 

 

Heritable Regulatory Architecture Z: 

−𝑇" . 𝑥 + 𝑘"# . 𝑦 − 𝑘"$ . 𝑧 = 0	

−𝑘#" . 𝑥	−	𝑇# . 𝑦 + 𝑘#$ . 𝑧 = 0 

𝑘$" . 𝑥 − 𝑘$# . 𝑦	−	𝑇$ . 𝑧 = 0 

which has solutions that satisfy: 



 

𝑦! =	𝑥!.
𝑇" . 𝑇$ + 𝑘$" . 𝑘"$
𝑘"# . 𝑇$ + 𝑘$# . 𝑘"$

 

𝑧! = 𝑥!.
𝑇" . 𝑇# + 𝑘"# . 𝑘#"	
𝑘"# . 𝑘#$ − 𝑇# . 𝑘"$

 

 
Steady states with loss of all entities to complex formation at a constant rate. A common way in 
which entities change in living systems is through the formation of intermolecular complexes that 
then interact with different entities to perform different functions. If the same number of molecules 
per unit time (g) are lost for all entities (e.g., through incorporation into a 1:1:1 stoichiometric 
complex), then each entity needs to grow at the same rate (g) to maintain steady state (𝑥!, 𝑦!, 𝑧!).  
Heritable Regulatory Architecture A:  

𝑘"# . 𝑦 − 𝑇" . 𝑥 = γ 

−𝑇# . 𝑦 + 𝑘#" . 𝑥 = 𝛾 

i.e., 𝐴. 𝑋 = 𝐵, where A = -
−𝑇" 𝑘"#
𝑘#" −𝑇#

.; 𝑋 = /
𝑥!
𝑦!0; 𝐵 = /

𝛾
𝛾0 

The solution is given by 𝑋 = 𝐴&'. 𝐵 

(For A =	/𝑎 𝑏
𝑐 𝑑0,  𝐴

&' = '
()&*+

/ 𝑑 −𝑏
−𝑐 𝑎 0) 

𝑋 = 	
1

𝑇" . 𝑇# − 𝑘"# . 𝑘#"
-
−𝑇# −𝑘"#
−𝑘#" −𝑇"

. . /
𝛾
𝛾0 

𝑖. 𝑒. , /
𝑥!
𝑦!0 = 	

𝛾
𝑘"# . 𝑘#" − 𝑇" . 𝑇#

-
𝑇# +	𝑘"#
𝑇" +	𝑘#"

. 

To similarly identify the rates of growth for the other heritable regulatory architectures (B to Z) 
under constant rate of loss for all entities, inverses for the 3x3 matrices can be used. 

(For A = @
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

D,  𝐴&' = '
(,-&(./&*)-0).10+)/&+,1

E
𝑒𝑖 − 𝑓ℎ 𝑐ℎ − 𝑏𝑖 𝑏𝑓 − 𝑐𝑒
𝑓𝑔 − 𝑑𝑖 𝑎𝑖 − 𝑐𝑔 𝑐𝑑 − 𝑎𝑓
𝑑ℎ − 𝑒𝑔 𝑏𝑔 − 𝑎ℎ 𝑎𝑒 − 𝑏𝑑

F) 

Heritable Regulatory Architecture B:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇$ . 𝑘"# . 𝑘#" − 𝑇" . 𝑇# . 𝑇$

E
𝑇# . 𝑇$ + 𝑘"# . 𝑇$
𝑘#" . 𝑇$ +	𝑇# . 𝑇$

𝑘#" . 𝑘$# + 𝑘$# . 𝑇" + 𝑇" . 𝑇# − 𝑘"# . 𝑘#"
F 

 

Heritable Regulatory Architecture C:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑘"$ . 𝑘#" . 𝑘$# − 𝑇" . 𝑇# . 𝑇$

. E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"#
𝑇" . 𝑇$ + 𝑇" . 𝑘#$
𝑇" . 𝑇# + 𝑇# . 𝑘$"

F 



 

 
Heritable Regulatory Architecture D:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇$ . 𝑘"# . 𝑘#" − 𝑇" . 𝑇# . 𝑇$

. E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"#
𝑇" . 𝑇$ + 𝑇$ . 𝑘#"

𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑇# . 𝑘$" + 𝑘$" . 𝑘"# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"
F 

 
Heritable Regulatory Architecture E:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇$ . 𝑘"# . 𝑘#" − 𝑇" . 𝑇# . 𝑇$

. E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"#
𝑇" . 𝑇$ + 𝑇$ . 𝑘#"

𝑇" . 𝑇# + 𝑇" . 𝑘$# − 𝑇# . 𝑘$" − 𝑘$" . 𝑘"# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"
F 

 
Heritable Regulatory Architecture F:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" − 𝑇" . 𝑇# . 𝑇$

. E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$ − 𝑘#$ . 𝑘$#

𝑇" . 𝑇$ + 𝑇" . 𝑘#$ + 𝑇$ . 𝑘#"
𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"

F 

 
Heritable Regulatory Architecture G:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" − 𝑇" . 𝑇# . 𝑇$

. E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"# − 𝑘"# . 𝑘#$ + 𝑘#$ . 𝑘$#

𝑇" . 𝑇$ − 𝑇" . 𝑘#$ + 𝑇$ . 𝑘#"
𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"

F 

 
Heritable Regulatory Architecture H:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇$ . 𝑘"# . 𝑘#" + 𝑘"$ . 𝑘#" . 𝑘$# − 𝑇" . 𝑇# . 𝑇$

. E
𝑇# . 𝑇$ + 𝑇# . 𝑘"$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$

𝑇" . 𝑇$ + 𝑇$ . 𝑘#" + 𝑘#" . 𝑘"$
𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"

F 

 
Heritable Regulatory Architecture I:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇$ . 𝑘"# . 𝑘#" − 𝑘"$ . 𝑘#" . 𝑘$# − 𝑇" . 𝑇# . 𝑇$

. E
𝑇# . 𝑇$ − 𝑇# . 𝑘"$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$

𝑇" . 𝑇$ + 𝑇$ . 𝑘#" − 𝑘#" . 𝑘"$
𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"

F. 

 
Heritable Regulatory Architecture J:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑘"$ . 𝑘#" . 𝑘$# − 𝑇$ . 𝑘"# . 𝑘#" − 𝑇" . 𝑇# . 𝑇$

. E
𝑇# . 𝑇$ + 𝑇# . 𝑘"$ − 𝑇$ . 𝑘"# − 𝑘"# . 𝑘#$

𝑇" . 𝑇$ + 𝑇$ . 𝑘#" + 𝑘#" . 𝑘"$
𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑘$# . 𝑘#" + 𝑘"# . 𝑘#"

F. 



 

 
Heritable Regulatory Architecture K:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" + 𝑘#" . 𝑘#$ . 𝑘$" − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$ − 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ + 𝑇" . 𝑘#$ + 𝑇$ . 𝑘#" + 𝑘#$ . 𝑘$"

𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑇# . 𝑘$" + 𝑘$" . 𝑘"# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"
F 

 
Heritable Regulatory Architecture L:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
−𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" + 𝑘#" . 𝑘#$ . 𝑘$" − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$ + 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ + 𝑇" . 𝑘#$ + 𝑇$ . 𝑘#" + 𝑘#$ . 𝑘$"

𝑇" . 𝑇# − 𝑇" . 𝑘$# + 𝑇# . 𝑘$" + 𝑘$" . 𝑘"# − 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"
F 

 
Heritable Regulatory Architecture M:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" − 𝑘#" . 𝑘#$ . 𝑘$" − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$ − 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ + 𝑇" . 𝑘#$ + 𝑇$ . 𝑘#" − 𝑘#$ . 𝑘$"

𝑇" . 𝑇# + 𝑇" . 𝑘$# − 𝑇# . 𝑘$" − 𝑘$" . 𝑘"# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"
F 

 
Heritable Regulatory Architecture N:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" − 𝑘#" . 𝑘#$ . 𝑘$" − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ + 𝑇# . 𝑘"$ + 𝑇$ . 𝑘"# − 𝑘"# . 𝑘#$ + 𝑘"$ . 𝑘$" + 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ − 𝑇" . 𝑘#$ + 𝑇$ . 𝑘#" + 𝑘#" . 𝑘"$ + 𝑘#$ . 𝑘$" − 𝑘"$ . 𝑘$"
𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑇# . 𝑘$" + 𝑘$" . 𝑘"# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"

F 

 
Heritable Regulatory Architecture O:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# − 𝑇$ . 𝑘"# . 𝑘#" − 𝑘#" . 𝑘#$ . 𝑘$" − 𝑇" . 𝑇# . 𝑇$

. 



 

E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$ − 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ + 𝑇" . 𝑘#$ − 𝑇$ . 𝑘#" + 𝑘#$ . 𝑘$"

𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑇# . 𝑘$" + 𝑘$" . 𝑘"# − 𝑘$# . 𝑘#" + 𝑘"# . 𝑘#"
F 

 
Heritable Regulatory Architecture P:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
−𝑇" . 𝑘#$ . 𝑘$# − 𝑇$ . 𝑘"# . 𝑘#" − 𝑘#" . 𝑘#$ . 𝑘$" − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$ + 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ + 𝑇" . 𝑘#$ − 𝑇$ . 𝑘#" + 𝑘#$ . 𝑘$"

𝑇" . 𝑇# − 𝑇" . 𝑘$# + 𝑇# . 𝑘$" + 𝑘$" . 𝑘"# + 𝑘$# . 𝑘#" + 𝑘"# . 𝑘#"
F 

 
Heritable Regulatory Architecture Q:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" − 𝑘#" . 𝑘#$ . 𝑘$" − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"# − 𝑘"# . 𝑘#$ − 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ − 𝑇" . 𝑘#$ + 𝑇$ . 𝑘#" − 𝑘#$ . 𝑘$"

𝑇" . 𝑇# − 𝑇" . 𝑘$# + 𝑇# . 𝑘$" + 𝑘$" . 𝑘"# − 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"
F 

 
Heritable Regulatory Architecture R:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" + 𝑘#" . 𝑘#$ . 𝑘$" − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"# − 𝑘"# . 𝑘#$ + 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ − 𝑇" . 𝑘#$ + 𝑇$ . 𝑘#" + 𝑘#$ . 𝑘$"

𝑇" . 𝑇# + 𝑇" . 𝑘$# − 𝑇# . 𝑘$" − 𝑘$" . 𝑘"# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"
F 

 
Heritable Regulatory Architecture S:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# − 𝑇$ . 𝑘"# . 𝑘#" + 𝑘#" . 𝑘#$ . 𝑘$" − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$ − 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ + 𝑇" . 𝑘#$ − 𝑇$ . 𝑘#" − 𝑘#$ . 𝑘$"

𝑇" . 𝑇# + 𝑇" . 𝑘$# − 𝑇# . 𝑘$" − 𝑘$" . 𝑘"# − 𝑘$# . 𝑘#" + 𝑘"# . 𝑘#"
F 

 
Heritable Regulatory Architecture T: 



 

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" + 𝑇# . 𝑘"$ . 𝑘$" + 𝑘#" . 𝑘#$ . 𝑘$" + 𝑘"$ . 𝑘#" . 𝑘$# − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ + 𝑇# . 𝑘"$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$ + 𝑘"$ . 𝑘$" − 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ + 𝑇" . 𝑘#$ + 𝑇$ . 𝑘#" + 𝑘#" . 𝑘"$ + 𝑘#$ . 𝑘$" − 𝑘"$ . 𝑘$"
𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑇# . 𝑘$" + 𝑘$" . 𝑘"# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"

F 

Heritable Regulatory Architecture U:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" − 𝑇# . 𝑘"$ . 𝑘$" + 𝑘#" . 𝑘#$ . 𝑘$" − 𝑘"$ . 𝑘#" . 𝑘$# − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ − 𝑇# . 𝑘"$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$ − 𝑘"$ . 𝑘$" − 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ + 𝑇" . 𝑘#$ + 𝑇$ . 𝑘#" − 𝑘#" . 𝑘"$ + 𝑘#$ . 𝑘$" + 𝑘"$ . 𝑘$"
𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑇# . 𝑘$" + 𝑘$" . 𝑘"# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"

F 

 

Heritable Regulatory Architecture V:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
−𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" − 𝑇# . 𝑘"$ . 𝑘$" − 𝑘#" . 𝑘#$ . 𝑘$" − 𝑘"$ . 𝑘#" . 𝑘$# − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ − 𝑇# . 𝑘"$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$ − 𝑘"$ . 𝑘$" + 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ − 𝑇" . 𝑘#$ + 𝑇$ . 𝑘#" − 𝑘#" . 𝑘"$ − 𝑘#$ . 𝑘$" + 𝑘"$ . 𝑘$"
𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑇# . 𝑘$" + 𝑘$" . 𝑘"# + 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"

F 

 

Heritable Regulatory Architecture W:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
−𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" − 𝑇# . 𝑘"$ . 𝑘$" + 𝑘#" . 𝑘#$ . 𝑘$" + 𝑘"$ . 𝑘#" . 𝑘$# − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ − 𝑇# . 𝑘"$ + 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$ − 𝑘"$ . 𝑘$" + 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ + 𝑇" . 𝑘#$ + 𝑇$ . 𝑘#" − 𝑘#" . 𝑘"$ + 𝑘#$ . 𝑘$" + 𝑘"$ . 𝑘$"
𝑇" . 𝑇# − 𝑇" . 𝑘$# + 𝑇# . 𝑘$" + 𝑘$" . 𝑘"# − 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"

F 

 

Heritable Regulatory Architecture X:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" + 𝑇# . 𝑘"$ . 𝑘$" − 𝑘#" . 𝑘#$ . 𝑘$" − 𝑘"$ . 𝑘#" . 𝑘$# − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ + 𝑇# . 𝑘"$ − 𝑇$ . 𝑘"# − 𝑘"# . 𝑘#$ + 𝑘"$ . 𝑘$" − 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ + 𝑇" . 𝑘#$ − 𝑇$ . 𝑘#" − 𝑘#" . 𝑘"$ + 𝑘#$ . 𝑘$" − 𝑘"$ . 𝑘$"
𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑇# . 𝑘$" − 𝑘$" . 𝑘"# − 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"

F 

 



 

Heritable Regulatory Architecture Y:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑇" . 𝑘#$ . 𝑘$# + 𝑇$ . 𝑘"# . 𝑘#" + 𝑇# . 𝑘"$ . 𝑘$" − 𝑘#" . 𝑘#$ . 𝑘$" − 𝑘"$ . 𝑘#" . 𝑘$# − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ + 𝑇# . 𝑘"$ − 𝑇$ . 𝑘"# − 𝑘"# . 𝑘#$ + 𝑘"$ . 𝑘$" − 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ + 𝑇" . 𝑘#$ − 𝑇$ . 𝑘#" − 𝑘#" . 𝑘"$ + 𝑘#$ . 𝑘$" − 𝑘"$ . 𝑘$"
𝑇" . 𝑇# + 𝑇" . 𝑘$# + 𝑇# . 𝑘$" − 𝑘$" . 𝑘"# − 𝑘$# . 𝑘#" − 𝑘"# . 𝑘#"

F 

 
Heritable Regulatory Architecture Z:  

@
𝑥!
𝑦!
𝑧!
D =

𝛾
𝑘"$ . 𝑘#" . 𝑘$# + 𝑘#" . 𝑘#$ . 𝑘$" − 𝑇" . 𝑘#$ . 𝑘$# − 𝑇$ . 𝑘"# . 𝑘#" − 𝑇# . 𝑘"$ . 𝑘$" − 𝑇" . 𝑇# . 𝑇$

. 

E
𝑇# . 𝑇$ + 𝑇# . 𝑘"$ − 𝑇$ . 𝑘"# + 𝑘"# . 𝑘#$ − 𝑘"$ . 𝑘$" + 𝑘#$ . 𝑘$#
𝑇" . 𝑇$ + 𝑇$ . 𝑘#" − 𝑇" . 𝑘#$ + 𝑘#" . 𝑘"$ − 𝑘#$ . 𝑘$" + 𝑘"$ . 𝑘$"
𝑇" . 𝑇# + 𝑇" . 𝑘$# − 𝑇# . 𝑘$" + 𝑘$# . 𝑘#" − 𝑘$" . 𝑘"# + 𝑘"# . 𝑘#"

F 

Finally, if all molecules are diluted through cell division (typically one cell dividing to give two), 
then for maintaining steady state on average, each molecule needs to accumulate to 2x the average 
steady-state value per cell cycle (See Fig. 4 for simulations that include cell divisions).  

Response to genetic loss of an entity.  Loss of an entity (typically the RNA or protein product of a 
gene) through a genetic mutation is a common perturbation used for analyzing living systems. The 
consequences of losing each entity at steady state for each of the 26 heritable regulatory 
architectures are derived below.  

Heritable Regulatory Architecture A:  

When 𝑥 is lost, 

 �̇� = −𝑇# . 𝑦 

Which has the solution, 

𝑦 = 𝑦!. 𝑒&2!3, i.e., the concentration of 𝑦 undergoes exponential decay through turnover from its 
steady-state value (𝑦!). 

Similarly, when 𝑦 is lost,  

𝑥 = 𝑥!. 𝑒&2"3 
For all other architectures, loss of one entity can result in different dynamics of the other two 
entities (𝛼 and 𝛽, say) depending on their regulatory interactions. The equations for their dynamics 
is given by a pair of differential equations that can be coupled. 

i.e.,  �̇� = 𝐴. 𝑋, where �̇� = -�̇��̇�.; A = /𝑎 𝑏
𝑐 𝑑0; 𝑋 = /

𝛼
𝛽0	.  

The	general	solution	for	two	entities	𝛼	and	𝛽	that	have	steady	state	concentrations	𝛼!	and	
𝛽!	is		given	by	the	following	[1]:	



 

𝛼 =
𝐶'
2𝑚 c𝑒!.53(&70(0))(𝑎𝑒37 − 𝑑𝑒37 +𝑚(𝑒37 + 1) + 𝑑) − 𝑎𝑒!.53(&70(0))f

−	
𝑏𝐶9
𝑚 (𝑒!.53(&70(0)) −	𝑒!.53(70(0)))		

𝛽 =
𝐶9
2𝑚 c𝑎𝑒!.53(&70(0)) + 𝑒!.53(&70(0))(𝑎(−𝑒37) + 𝑑(𝑒37 − 1) + 𝑚(𝑒37 + 1))f

−	
𝑐𝐶'
𝑚 (𝑒!.53(&70(0)) −	𝑒!.53(70(0)))		

where, 𝑚 =	√𝑎9 − 2𝑎𝑑 + 4𝑏𝑐 + 𝑑9 and 𝐶' and 𝐶9	are arbitrary constants. 
Simplifying, 

𝛼 =
𝐶'
2𝑚 i𝑒!.53((0)&7)(𝑒37(𝑎 − 𝑑 +𝑚) +𝑚 + 𝑑 − 𝑎)j −	

𝑏𝐶9
𝑚 (𝑒!.53((0)&7) −	𝑒!.53((0)07)) 

𝛽 =
𝐶9
2𝑚 i𝑒!.53((0)&7)(𝑒37(𝑑 − 𝑎 +𝑚) +𝑚 − 𝑑 + 𝑎)j −	

𝑐𝐶'
𝑚 (𝑒!.53((0)&7) −	𝑒!.53((0)07))		

Substituting values for steady state at 𝑡 = 0 above and simplifying yields 𝛼! = 𝐶'and 𝛽! = 𝐶9 
Thus, the solution is given by the following  two equations (I): 

𝛼 =
𝛼!
2𝑚i𝑒!.53((0)&7)(𝑒37(𝑎 − 𝑑 +𝑚) +𝑚 + 𝑑 − 𝑎)j −	

𝑏𝛽!
𝑚 (𝑒!.53((0)&7) −	𝑒!.53((0)07)) 

𝛽 =
𝛽!
2𝑚 i𝑒!.53((0)&7)(𝑒37(𝑑 − 𝑎 +𝑚) +𝑚 − 𝑑 + 𝑎)j −	

𝑐𝛼!
𝑚 (𝑒!.53((0)&7) −	𝑒!.53((0)07))	

where, 𝑚 = √𝑎9 − 2𝑎𝑑 + 4𝑏𝑐 + 𝑑9  
These equations can be used to solve the dynamics that result in the residual architectures formed 
by two or fewer entities upon loss of an entity. In general, for such regulatory architectures 
composed of 𝛼 and 𝛽 to persist over time, �̇� and �̇� both need to be ≥ 0. 
Rewriting with new constants, 

�̇� =
𝑑
𝑑𝑡 i𝐴c𝑒

:3(𝑒;3 . 𝐷 + 𝐸)f − 𝐹(𝑒:3 − 𝑒<3)j 

�̇� =
𝑑
𝑑𝑡 c

(𝐴𝐷 + 𝐹). 𝑒<3 + (𝐴𝐸 − 𝐹). 𝑒:3f 

�̇� = (𝐴𝐷 + 𝐹)𝐺. 𝑒<3 + (𝐴𝐸 − 𝐹)𝐵. 𝑒:3 ≥ 0 
 
Thus, 
(𝐴𝐷 + 𝐹)𝐺
(𝐹 − 𝐴𝐸)𝐵 ≥ 𝑒:3&<3 

(𝐴𝐷 + 𝐹)𝐺
(𝐹 − 𝐴𝐸)𝐵 ≥ 𝑒&37 

i.e., at  𝑡 = 0 when one of the entities is lost, the L.H.S ≥ 1 



 

Substituting, 

q
𝛼!
2𝑚 . (𝑎 − 𝑑 +𝑚) +

𝑏𝛽!
𝑚 rq

𝑎 + 𝑑 +𝑚
2 r ≥ s

𝑏𝛽!
𝑚 −

𝛼!
2𝑚 . (𝑚 + 𝑑 − 𝑎)t q

𝑎 + 𝑑 −𝑚
2 r 

Which simplifies to, 
𝛼!
𝛽!
≥
−𝑏
𝑎  

This inequality needs to be satisfied for mutual activation to be stable or to grow over time.  

Similarly differentiating and simplifying �̇�, 

�̇� = )
)3
i𝐴c𝑒:3(𝑒;3 . 𝐷 + 𝐸)f − 𝐹(𝑒:3 − 𝑒<3)j, with different definitions for A-F compared to that 

for �̇�. Similarly, 
(𝐴𝐷 + 𝐹)𝐺
(𝐹 − 𝐴𝐸)𝐵 ≥ 𝑒:3&=3 

(𝐴𝐷 + 𝐹)𝐺 ≥ (𝐹 − 𝐴𝐸)𝐵 at 𝑡 = 0 
Substituting, 

q
𝛽!
2𝑚 . (𝑑 − 𝑎 +𝑚) +	

𝑐𝛼!
𝑚 rq

𝑎 + 𝑑 +𝑚
2 r ≥ 	q

𝑎 + 𝑑 −𝑚
2 rs

𝑐𝛼!
𝑚 −	

𝛽!
2𝑚 . (𝑚 − 𝑑 + 𝑎)t 

Which simplifies to, 
𝛼!
𝛽!
≥
−𝑑
𝑐  

Which is also obtained simply by setting 𝛼 = 𝛼!	and 𝛽 = 𝛽! in the equations for �̇�	and �̇�, and 
requiring the result to be ≥ 0.  

For example, if 𝛼 = 𝑥, 𝛽 = 𝑦, and the simple heritable regulatory architecture A is the residual 
architecture after loss of an entity (𝑧), then: 

!!
"!
≥ " #"

$"#
	= 	 $#"

##
	%  

 
Heritable Regulatory Architecture B:  

When 𝑦 is lost, 

�̇� = −𝑇$ . 𝑧 + 0. 𝑥 

�̇� = 0. 𝑧 − 𝑇" . 𝑥 

Calculating 𝑚 =	u𝑇$9 − 2𝑇$𝑇" + 𝑇"9 = ±(𝑇$ −	𝑇") = 𝑎 − 𝑑	in the notation for the generic 

equations, when 𝑎 ≠ 𝑑. 



 

Substituting 𝑚 = 𝑎 − 𝑑 , 𝛼 = 𝑥 and 𝛽 = 𝑧 in the equations I, followed by simplifications yields: 

𝑧 =
𝑧!

2(𝑎 − 𝑑)
(𝑒)3(𝑒(3&)32(𝑎 − 𝑑) + 𝑎 − 𝑑 + 𝑑 − 𝑎)) −	

𝑏𝑥!
(𝑎 − 𝑑) (𝑒

)3 −	𝑒(3) 

𝑥 =
𝑥!

2(𝑎 − 𝑑) i𝑒
)3(𝑒(3&)3 . 0 + 𝑎 − 𝑑 − 𝑑 + 𝑎)j −

𝑐𝑧!
(𝑎 − 𝑑)

(𝑒)3 −	𝑒(3) 

Simplifying further and substituting 𝑎 = −𝑇$, 𝑏 = 0, 𝑐 = 0, and 𝑑 = −𝑇" 

𝑧 = 𝑧!. 𝑒&2#3 

𝑥 = 𝑧!. 𝑒&2"3 
Which are the equations for independent exponential decay due to turnover as expected. The same 
equations are obtained when 𝑚 = 𝑑 − 𝑎. 
 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

Calculating 𝑚 =	u𝑇#9 − 2𝑇#𝑇$ + 𝑇$9 = ±c𝑇# −	𝑇$f = 𝑎 − 𝑑 in the notations for equations I. 

Substituting 𝑚 = 𝑎 − 𝑑 , 𝛼 = 𝑦 and 𝛽 = 𝑧 in the equations I, followed by simplifications yields: 

𝑦 =
𝑦!

2(𝑎 − 𝑑)
(𝑒)3(𝑒(3&)32(𝑎 − 𝑑) + 𝑎 − 𝑑 + 𝑑 − 𝑎)) −

𝑏𝑧!
(𝑎 − 𝑑) (𝑒

)3 − 𝑒(3) 

𝑧 =
𝑧!

2(𝑎 − 𝑑)
(𝑒)3(𝑒(3&)3 . 0 + 𝑎 − 𝑑 − 𝑑 + 𝑎)) −

𝑐𝑦!
(𝑎 − 𝑑) (𝑒

)3 −	𝑒(3)		

Simplifying further and substituting 𝑎 = −𝑇#,  𝑏 = 0, 𝑐 = 𝑘$#, and 𝑑 = −𝑇$   

𝑦 = 𝑦!. 𝑒&2!3 

𝑧 = 𝑧!. 𝑒&2#3 +
𝑘$# . 𝑦!
c𝑇# − 𝑇$f

(𝑒&2#3 − 𝑒&2!3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥	+	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

Calculating 𝑚 =	u𝑇"9 − 2𝑇"𝑇# + 4𝑘"#𝑘#" + 𝑇#9 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#"	 

Thus the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 𝑎 =
−𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 



 

Heritable Regulatory Architecture C:  

When 𝑥 is lost, 

�̇� = −𝑇$ . 𝑧 + 0. 𝑦 

�̇� = 𝑘#$ . 𝑧 − 𝑇# . 𝑦 

For which the solutions simplify to, 

𝑧 = 𝑧!. 𝑒&2#3 

𝑦 = 𝑦!. 𝑒&2!3 +
𝑘#$ . 𝑧!
c𝑇$ − 𝑇#f

(𝑒&2!3 − 𝑒&2#3) 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 0. 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 +
𝑘$" . 𝑥!
(𝑇" − 𝑇$)

(𝑒&2#3 − 𝑒&2"3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 + 𝑘"# . 𝑦 

�̇� = 0. 𝑥 − 𝑇# . 𝑦 

For which the solutions simplify to, 

𝑦 = 𝑦!. 𝑒&2!3 

𝑥 = 𝑥!. 𝑒&2"3 +
𝑘"# . 𝑦!
c𝑇# − 𝑇"f

(𝑒&2"3 − 𝑒&2!3) 

 

Heritable Regulatory Architecture D:  

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 0. 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions simplify to, 

𝑧 = 𝑧!. 𝑒&2#3 



 

𝑦 = 𝑦!. 𝑒&2!3 +
𝑘#$ . 𝑧!
c𝑇$ − 𝑇#f

(𝑒&2!3 − 𝑒&2#3) 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 0. 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 +
𝑘$" . 𝑥!
(𝑇" − 𝑇$)

(𝑒&2#3 − 𝑒&2"3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 + 𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 

Heritable Regulatory Architecture E: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 0. 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions simplify to, 

𝑧 = 𝑧!. 𝑒&2#3 

𝑦 = 𝑦!. 𝑒&2!3 +
𝑘#$ . 𝑧!
c𝑇$ − 𝑇#f

(𝑒&2!3 − 𝑒&2#3) 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 0. 𝑧 

�̇� = −𝑘$" . 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 



 

𝑧 = 𝑧!. 𝑒&2#3 −
𝑘$" . 𝑥!
(𝑇" − 𝑇$)

(𝑒&2#3 − 𝑒&2"3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 + 𝑘"# . 𝑦 

�̇� = 𝑘"# . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 

Heritable Regulatory Architecture F: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 +	𝑘#$ . 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘#$𝑘$#, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = 𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 	0. 𝑧 

�̇� = 0. 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 
 

When 𝑧 is lost, 

�̇� = −𝑇# . 𝑦 +	𝑘#" . 𝑥 

�̇� = 𝑘"# . 𝑦 − 𝑇" . 𝑥 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 
Heritable Regulatory Architecture G: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 − 𝑘#$ . 𝑧 



 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = −𝑘#$, 𝑐 = 𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 	0. 𝑧 

�̇� = 0. 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 
 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 

Heritable Regulatory Architecture H: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 − 0. 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions simplify to, 

𝑦 = 𝑦!. 𝑒&2!3 

𝑧 = 𝑧!. 𝑒&2#3 −
𝑘$# . 𝑦!
c𝑇# − 𝑇$f

(𝑒&2#3 − 𝑒&2!3) 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"$ . 𝑧 

�̇� = 0. 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑧 = 𝑧!. 𝑒&2#3 



 

𝑥 = 𝑥!. 𝑒&2"3 +
𝑘"$ . 𝑧!
(𝑇$ − 𝑇")

(𝑒&2"3 − 𝑒&2#3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 

Heritable Regulatory Architecture I: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 − 0. 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions simplify to, 

𝑦 = 𝑦!. 𝑒&2!3 

𝑧 = 𝑧!. 𝑒&2#3 −
𝑘$# . 𝑦!
c𝑇# − 𝑇$f

(𝑒&2#3 − 𝑒&2!3) 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 − 𝑘"$ . 𝑧 

�̇� = 0. 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑧 = 𝑧!. 𝑒&2#3 

𝑥 = 𝑥!. 𝑒&2"3 −
𝑘"$ . 𝑧!
(𝑇$ − 𝑇")

(𝑒&2"3 − 𝑒&2#3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 



 

Heritable Regulatory Architecture J: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 − 0. 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions simplify to, 

𝑦 = 𝑦!. 𝑒&2!3 

𝑧 = 𝑧!. 𝑒&2#3 −
𝑘$# . 𝑦!
c𝑇# − 𝑇$f

(𝑒&2#3 − 𝑒&2!3) 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"$ . 𝑧 

�̇� = 0. 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑧 = 𝑧!. 𝑒&2#3 

𝑥 = 𝑥!. 𝑒&2"3 +
𝑘"$ . 𝑧!
(𝑇$ − 𝑇")

(𝑒&2"3 − 𝑒&2#3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 − 𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = −𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 
Heritable Regulatory Architecture K: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 𝑘#$ . 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = 𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 	0. 𝑧 



 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 +
𝑘$" . 𝑥!
(𝑇" − 𝑇$)

(𝑒&2#3 − 𝑒&2"3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 
Heritable Regulatory Architecture L: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 𝑘#$ . 𝑧 

�̇� = −𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = −𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 	0. 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 +
𝑘$" . 𝑥!
(𝑇" − 𝑇$)

(𝑒&2#3 − 𝑒&2"3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 



 

 
Heritable Regulatory Architecture M: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 𝑘#$ . 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = 𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 	0. 𝑧 

�̇� = −𝑘$" . 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 −
𝑘$" . 𝑥!
(𝑇" − 𝑇$)

(𝑒&2#3 − 𝑒&2"3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 

Heritable Regulatory Architecture N: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 − 𝑘#$ . 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = −𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 	0. 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 



 

For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 +
𝑘$" . 𝑥!
(𝑇" − 𝑇$)

(𝑒&2#3 − 𝑒&2"3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇$ 

 

Heritable Regulatory Architecture O: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 𝑘#$ . 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = 𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 	0. 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 +
𝑘$" . 𝑥!
(𝑇" − 𝑇$)

(𝑒&2#3 − 𝑒&2"3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = −𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = −𝑘#" and 𝑑 = −𝑇# 

 



 

Heritable Regulatory Architecture P: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 𝑘#$ . 𝑧 

�̇� = −𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = −𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 	0. 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 +
𝑘$" . 𝑥!
(𝑇" − 𝑇$)

(𝑒&2#3 − 𝑒&2"3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = −𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = −𝑘#" and 𝑑 = −𝑇# 

 
Heritable Regulatory Architecture Q: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 − 𝑘#$ . 𝑧 

�̇� = −𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = −𝑘#$, 𝑐 = −𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is perturbed, 

�̇� = −𝑇" . 𝑥 + 	0. 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 



 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 +
𝑘$" . 𝑥!
(𝑇" − 𝑇$)

(𝑒&2#3 − 𝑒&2"3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 
Heritable Regulatory Architecture R: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 − 𝑘#$ . 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = −𝑘#$, 𝑐 = 𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 	0. 𝑧 

�̇� = −𝑘$" . 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 −
𝑘$" . 𝑥!
(𝑇" − 𝑇$)

(𝑒&2#3 − 𝑒&2"3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 
Heritable Regulatory Architecture S: 



 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 𝑘#$ . 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = 𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 + 	0. 𝑧 

�̇� = −𝑘$" . 𝑥 − 𝑇$ . 𝑧 
For which the solutions simplify to, 

𝑥 = 𝑥!. 𝑒&2"3 

𝑧 = 𝑧!. 𝑒&2#3 −
𝑘$" . 𝑥!
(𝑇" − 𝑇$)

(𝑒&2#3 − 𝑒&2"3) 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = −𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = −𝑘#" and 𝑑 = −𝑇# 

 

Heritable Regulatory Architecture T: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 𝑘#$ . 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = 𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"$ . 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇$)9 + 4𝑘$"𝑘"$, 𝛼 = 𝑥, 𝛽 = 𝑧, 
𝑎 = −𝑇", 𝑏 = 𝑘"$, 𝑐 = 𝑘$" and 𝑑 = −𝑇$ 



 

 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 

Heritable Regulatory Architecture U: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 𝑘#$ . 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = 𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 − 𝑘"$ . 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇$)9 + 4𝑘$"𝑘"$, 𝛼 = 𝑥, 𝛽 = 𝑧, 
𝑎 = −𝑇", 𝑏 = −𝑘"$, 𝑐 = 𝑘$" and 𝑑 = −𝑇$ 
 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 

Heritable Regulatory Architecture V: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 − 𝑘#$ . 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = −𝑘#$, 𝑐 = 𝑘$# and 𝑑 = −𝑇$ 



 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 − 𝑘"$ . 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇$)9 + 4𝑘$"𝑘"$, 𝛼 = 𝑥, 𝛽 = 𝑧, 
𝑎 = −𝑇", 𝑏 = −𝑘"$, 𝑐 = 𝑘$" and 𝑑 = −𝑇$ 
 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 
Heritable Regulatory Architecture W: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 𝑘#$ . 𝑧 

�̇� = −𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = −𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 − 𝑘"$ . 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇$)9 + 4𝑘$"𝑘"$, 𝛼 = 𝑥, 𝛽 = 𝑧, 
𝑎 = −𝑇", 𝑏 = 𝑘"$, 𝑐 = 𝑘$" and 𝑑 = −𝑇$ 
 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = 𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = 𝑘#" and 𝑑 = −𝑇# 

 



 

Heritable Regulatory Architecture X: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 𝑘#$ . 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = 𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"$ . 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇$)9 + 4𝑘$"𝑘"$, 𝛼 = 𝑥, 𝛽 = 𝑧, 
𝑎 = −𝑇", 𝑏 = 𝑘"$, 𝑐 = 𝑘$" and 𝑑 = −𝑇$ 
 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	−𝑘"# . 𝑦 

�̇� = −𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = −𝑘"#, 𝑐 = −𝑘#" and 𝑑 = −𝑇# 

 

Heritable Regulatory Architecture Y: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 𝑘#$ . 𝑧 

�̇� = 𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = 𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"$ . 𝑧 

�̇� = −𝑘$" . 𝑥 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇$)9 + 4𝑘$"𝑘"$, 𝛼 = 𝑥, 𝛽 = 𝑧, 
𝑎 = −𝑇", 𝑏 = 𝑘"$, 𝑐 = −𝑘$" and 𝑑 = −𝑇$ 
 



 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	−𝑘"# . 𝑦 

�̇� = −𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = −𝑘"#, 𝑐 = −𝑘#" and 𝑑 = −𝑇# 

 
Heritable Regulatory Architecture Z: 

When 𝑥 is lost, 

�̇� = −𝑇# . 𝑦 + 𝑘#$ . 𝑧 

�̇� = −𝑘$# . 𝑦 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇# −	𝑇$)9 + 4𝑘$#𝑘#$, 𝛼 = 𝑦, 𝛽 = 𝑧, 
𝑎 = −𝑇#, 𝑏 = 𝑘#$, 𝑐 = −𝑘$# and 𝑑 = −𝑇$ 

 

When 𝑦 is lost, 

�̇� = −𝑇" . 𝑥 +	−𝑘"$ . 𝑧 

�̇� = 𝑘$" . 𝑥 − 𝑇$ . 𝑧 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇$)9 + 4𝑘$"𝑘"$, 𝛼 = 𝑥, 𝛽 = 𝑧, 
𝑎 = −𝑇", 𝑏 = −𝑘"$, 𝑐 = 𝑘$" and 𝑑 = −𝑇$ 
 

When 𝑧 is lost, 

�̇� = −𝑇" . 𝑥 +	𝑘"# . 𝑦 

�̇� = −𝑘#" . 𝑥 − 𝑇# . 𝑦 

For which the solutions are as in equations I with 𝑚 = x(𝑇" −	𝑇#)9 + 4𝑘"#𝑘#", 𝛼 = 𝑥, 𝛽 = 𝑦, 
𝑎 = −𝑇", 𝑏 = 𝑘"#, 𝑐 = −𝑘#" and 𝑑 = −𝑇# 

These exact equations that result upon loss of each entity in each regulatory architecture can 
potentially be used to distinguish the different architectures through genetic experiments (e.g., 
knockout of individual genes using genome editing). Since for the steady state of each architecture, 
there are a maximum of three equations, a maximum of three variables among rates of production 
(𝑘"# , 𝑘#" etc.), rates of turnover (𝑇" , 𝑇# , 𝑇$), and the steady-state concentrations (𝑥!,	𝑦!, 𝑧!) are 
constrained. Changes in all entities after each loss can be determined for all architectures through 
simulations by choosing random values for the unconstrained parameters (Figures S2 to S8, left).  
Response to epigenetic change. Analytic expressions for heritable epigenetic change after reducing 
the levels of a sensor from steady state are derived below for the simplest of heritable regulatory 
architectures ‘A’ (Fig. 1).  



 

The dynamics of two entities (𝑥 and 𝑦) that mutually promote each other’s production is given by 
a pair of differential equations that are coupled. 

i.e.,   �̇� = 𝐴. 𝑋, where �̇� = -�̇��̇�.; A = /𝑎 𝑏
𝑐 𝑑0; 𝑋 = /

𝑥
𝑦0	  and 𝑎 = −𝑇",	𝑏 = 𝑘"#, 𝑐 = 𝑘#",	 𝑑 = 	−𝑇# 

The	general	solution	for	the	concentrations	𝑥(𝑡)	and	𝑦(𝑡)	are	as	before:	

𝑥(𝑡) =
𝐾'
2𝑚i𝑒!.53((0)&7)(𝑒37(𝑎 − 𝑑 +𝑚) +𝑚 + 𝑑 − 𝑎)j −	

𝑏𝐾9
𝑚 (𝑒!.53((0)&7)

−	𝑒!.53((0)07)) 

𝑦(𝑡) =
𝐾9
2𝑚 i𝑒!.53((0)&7)(𝑒37(𝑑 − 𝑎 +𝑚) +𝑚 − 𝑑 + 𝑎)j −	

𝑐𝐾'
𝑚 (𝑒!.53((0)&7)

−	𝑒!.53((0)07))	

where, 𝑚 = √𝑎9 − 2𝑎𝑑 + 4𝑏𝑐 + 𝑑9 and, 𝐾'and 𝐾9are constants. 

Since the system was already at steady state before the perturbation, 𝑇"𝑇# = 𝑘"#𝑘#",  

𝑚 = u𝑇"9 − 2𝑇"𝑇# + 4𝑘"#𝑘#" + 𝑇#9 = 𝑇" +	𝑇#	 

Substituting the value of 𝑚 in the equations above and simplifying yields,  

 𝑥(𝑡) = >$.2!0>%.?"!
2"02!

+ >$.2"&>%.?"!
2"02!

. 𝑒&@2"02!A3 and 𝑦(𝑡) = >%.2"0>$.?!"
2"02!

+ >%.2!&>$.?!"
2"02!

. 𝑒&(2"02!)3 

Let 𝑑" be the reduction in 𝑥 (reduction-of-function) needed to observe a defect when 𝑥!	is the 
steady-state value before perturbation. That is, 𝑑" . 𝑥! is not sufficient for the function of 𝑥 in a 
living system, where 𝑑" < 1. Let 𝑥 be perturbed to 𝑥B = 𝑝. 𝑑" . 𝑥! 	≠ 0 from 𝑡 = 0 until 𝑡 = 𝑡B, 
where 𝑝 < 1. For heritable epigenetic changes using reduction-of-function perturbations (𝑑" < 1 
and/or 𝑑# < 1), which preserve the architecture at a new steady state: 𝑥B%	< 𝑑" . 𝑥! and 𝑦B% < 𝑑# . 𝑦!. 

To determine the concentration of 𝑦 at the end of the perturbation (𝑦B) the equation �̇� = 	 𝑥B. 𝑘#" −
𝑇# . 𝑦 can be solved using 𝑦(𝑡) 	= 	𝑦! at 𝑡 = 	0. The general solution of the equation is given by,  

𝑦(𝑡) = 	
𝑥B. 𝑘#"
𝑇#

+ 𝐶'. 𝑒&2!3 

Substituting for 𝑦(0) = 𝑦! at 𝑡 = 0, and rearranging gives 𝐶' =	
#&.2!	&"'.?!"

2!
. Thus, at the end of 

the perturbation (i.e., at 𝑡B), 

𝑦c𝑡Bf = 𝑦B =
𝑥B. 𝑘#"
𝑇#

+	(
𝑦!. 𝑇# 	− 𝑥B. 𝑘#"

𝑇#
). 𝑒&2!3' 	 

The new steady states (𝑥B%	and	𝑦B%) will be reached from the initial concentrations of 𝑥B and 𝑦B.  

Therefore, to determine the new steady state, the initial values of 𝑥B and 𝑦B can be used at new 
𝑡 = 0 to get the values for the constants 𝐾'	and	𝐾9. 

𝑥B =
𝐾'. 𝑇# + 𝐾9. 𝑘"#

𝑇" + 𝑇#
+
𝐾'. 𝑇" − 𝐾9. 𝑘"#

𝑇" + 𝑇#
. 𝑒&@2"02!A3D! 



 

𝑦B =
𝐾9. 𝑇" + 𝐾'. 𝑘#"

𝑇" + 𝑇#
+
𝐾9. 𝑇# − 𝐾'. 𝑘#"

𝑇" + 𝑇#
. 𝑒&(2"02!)3D! 

Which simplifies to, 

𝑥B =
𝐾'. 𝑇# + 𝐾9. 𝑘"#

𝑇" + 𝑇#
+
𝐾'. 𝑇" − 𝐾9. 𝑘"#

𝑇" + 𝑇#
	 

𝑦B =
𝐾9. 𝑇" + 𝐾'. 𝑘#"

𝑇" + 𝑇#
+
𝐾9. 𝑇# − 𝐾'. 𝑘#"

𝑇" + 𝑇#
 

Solving for each, 

𝐾' 	= 	 𝑥B 

𝐾9 	= 	 𝑦B 

To obtain the new steady state value 𝑥B%, set 𝑡 = ∞ in the equation using the above constants. 

𝑥B% =
𝑥B. 𝑇# + 𝑦B. 𝑘"#

𝑇" + 𝑇#
 

𝑦B% =
𝑦B. 𝑇" + 𝑥B. 𝑘#"

𝑇" + 𝑇#
 

Consider the equality that is the threshold for observing heritable epigenetic effects,  

𝑥B% =
𝑥B. 𝑇# + 𝑦B. 𝑘"#

𝑇" + 𝑇#
= 𝑑" . 𝑥!	 

Substituting for 𝑥B and simplifying yields, 

𝑦B. 𝑘"# 	= 	𝑑" . 𝑥!. 𝑇" 	+ 	𝑑" . 𝑥!. 𝑇#(1 − 𝑝) 

Substituting for 𝑦B 

(
𝑥B. 𝑘#"
𝑇#

+	(
𝑦!. 𝑇# 	− 𝑥B. 𝑘#"

𝑇#
). 𝑒&2!3'). 𝑘"# 	= 	𝑑" . 𝑥!. 𝑇" 	+ 	𝑑" . 𝑥!. 𝑇#(1 − 𝑝) 

Collecting exponential terms, 

𝑒&2!3'(
𝑦!. 𝑘"# . 𝑇# 	− 	𝑝. 𝑑" . 𝑥!. 𝑘#" . 𝑘"#

𝑇#
) = 	𝑑" . 𝑥!. 𝑇" 	+ 	𝑑" . 𝑥!. 𝑇#(1 − 𝑝) 	−	

𝑝. 𝑑" . 𝑥!. 𝑘#" . 𝑘"#
𝑇#

 

𝑒&2!3' 	= 	
𝑑" . 𝑥!. 𝑇" . 𝑇# 	+ 	𝑑" . 𝑥!. 𝑇# . 𝑇# . (1 − 𝑝) 	− 𝑝. 𝑑" . 𝑥!. 𝑘#" . 𝑘"#	

𝑦!. 𝑘"# . 𝑇# . 𝑇# 	− 	𝑝. 𝑑" . 𝑥!. 𝑘#" . 𝑘"#
 

𝑒&2!3' 	= 	
𝑑" . 𝑥!. 𝑇" . 𝑇# 	+ 	𝑑" . 𝑥!. 𝑇# . 𝑇# − 𝑝. 𝑑" . 𝑥!. (𝑘#" . 𝑘"# + 𝑇# . 𝑇#)	

𝑦!. 𝑘"# . 𝑇# 	− 	𝑝. 𝑑" . 𝑥!. 𝑘#" . 𝑘"#
 

Dividing numerator and denominator with 𝑇#, 



 

𝑒&2!3' 	= 	
𝑑" . 𝑥!. 𝑇" 	+ 	𝑑" . 𝑥!. 𝑇# − 𝑝. 𝑑" . 𝑥!. (

𝑘#" . 𝑘#"
𝑇#

+ 𝑇#)	

𝑦!. 𝑘"# −	𝑝. 𝑑" . 𝑥!.
𝑘#" . 𝑘#"
𝑇#

 

At steady state, the ratio "(3)
#(3)

 will be independent of the concentrations of 𝑥	and 𝑦. That is, "'(
#'(

=
"&
#&
= ?"!

2"
= 2!

?!"
. Therefore, these equalities can be used to simplify the above equations. 

Substituting ?!".?!"
2!

	= 	𝑇", 

𝑒&2!3' 	= 	
𝑑" . 𝑥!. 𝑇" 	+ 	𝑑" . 𝑥!. 𝑇# − 𝑝. 𝑑" . 𝑥!. (𝑇" + 𝑇#)	

𝑦!. 𝑘"# −	𝑝. 𝑑" . 𝑥!. 𝑇"
 

Substituting 𝑦!. 𝑘"# 	= 	 𝑥!. 𝑇", 

𝑒&2!3' 	= 	
𝑑" . 𝑥!. 𝑇" 	+ 	𝑑" . 𝑥!. 𝑇# − 𝑝. 𝑑" . 𝑥!. (𝑇" + 𝑇#)	

𝑥!. 𝑇" −	𝑝. 𝑑" . 𝑥!. 𝑇"
 

Dividing numerator and denominator by 𝑥!. 𝑇" 

𝑒&2!3' 	= 	
𝑑" +	𝑑" .

𝑇#
𝑇"
− 𝑝. 𝑑" . (1 +

𝑇#
𝑇"
)	

1 −	𝑝. 𝑑"
 

Simplifying, 

𝑒&2!3' 	= 	
(1 +

𝑇#
𝑇"
). (1 − 𝑝). 𝑑"	

1 −	𝑝. 𝑑"
 

Dividing numerator and denominator by 𝑑" 

𝑒&2!3' 	= 	
(1 +

𝑇#
𝑇"
). (1 − 𝑝)	

i 1𝑑"
− 	𝑝j

 

Taking the loge on both sides,  

 

−𝑇#𝑡B 	= 	𝑙𝑛 �
q1 +

𝑇#
𝑇"
r . (1 − 𝑝)	

1
𝑑"
− 	𝑝

� 

i.e.,  

𝑡B 	= 	
1
𝑇#
𝑙𝑛 �

1
𝑑"
− 	𝑝	

q1 +
𝑇#
𝑇"
r . (1 − 𝑝)	

� 



 

Dividing numerator and denominator within the antilogarithm by 𝑝, 

𝑡B 	= 	
1
𝑇#
𝑙𝑛 �

1
𝑑" . 𝑝

− 	1	

i1𝑝 − 1j q1 +
𝑇#
𝑇"
r	
� 

This equation relates the duration of a perturbation (𝑡B) and the extent of the perturbation (𝑝 < 1 
for loss-of-function) beyond the threshold that causes a defect in the function of 𝑥 (i.e., 𝑑"). 
Increasing the duration of the perturbation beyond 𝑡B for a given extent of perturbation (𝑝) will 
result in heritable epigenetic change where the steady-state levels of both interactors are 
insufficient for appropriate function.  

Similarly, the minimal duration of perturbation for heritable epigenetic changes through a defect 
in the function of 𝑦 is given by, 

𝑡B >
1
𝑇"
𝑙𝑛 �

1
𝑑# . 𝑝

− 	1	

i1𝑝 − 1j q1 +
𝑇"
𝑇#
r	
� 

These inequalities were verified using numerical simulations (see ‘HRA_A_ 
tp_analytical_expression_check.py’) and additional HRAs were similarly simulated to gain 
intuitions about the consequences of epigenetic reduction in the levels of entities (Figures S3 to 
S9).  
Exploration of simple ESP systems. To gain intuitions by exploring and perturbing simulated 
ESP systems, several interactive features were added to the ESP simulator (Fig. S10, Movie S1). 
These include parameters that control the setup and running of randomly generated ESP systems 
by specifying the probability of regulatory interactions in the system (link-chance, Fig. S10A), the 
probability of positive versus negative interactions (positive-interactions, Fig. S10A), the 
maximum number of molecules at the start of the simulation (max-molecules, Fig. S10A), the 
maximum number of molecules that will arrest growth until dilution through cell divisions to 
simulate depletion of raw materials or energy (stasis-level, Fig. S10A), maximum number of 
molecules in total reflecting the limited space occupied by living systems (max-ever-molecules, 
Fig. S10A), and duration of the cell cycle (cycle-time, Fig. S10A). Particular systems can be re-
established and re-simulated by setting the random number seed that is used for controlling all 
stochastic steps (system-id, Fig. S10B) and by additionally specifying the above parameters along 
with the number of entities/sensors at the start of the simulation (molecule-kinds, Fig. S10B). For 
each such system, the number of entities that can increase or decrease at one time was set to be 
characteristic of each entity/sensor (unit change in property value, i.e., number) and the number of 
sensors needed to change one unit of each entity/sensor was set to be characteristic of each 
regulatory interaction (thickness of link increases with increasing sensitivity of regulation). 
Periodic loss-of-function or gain-of-function perturbations (perturb-kind, Fig. S10B) can be set up 
to begin in five different phases relative to the start of the simulation (perturb-phase [0, 1, 2, 3 or 
4], Fig. S10B). Perturbations that can be made during the simulation include changing the number 
of molecules of any entity/sensor (change-a-node, Fig. S10C), adding an entity/sensor (add-a-
node, Fig. S10C), removing an entity/sensor (remove-a-node, Fig. S10C), removing a particular 
regulatory interaction (remove-link-x-y, Fig. S10C), removing a random regulatory interaction 
(remove-a-link, Fig. S10C), and changing the strength of a regulatory input (link-hold, Fig. S10C). 



 

Finally, a reporter for any entity/sensor (add-a-reporter, Fig. S10D) can be set up that either 
perfectly or partially interacts with all its regulators (perfect?, Fig. S10D). A perfect reporter of an 
entity/sensor receives the same regulatory input as the entity/sensor of interest does. An imperfect 
reporter of an entity receives input from the same sensors as the entity/sensor of interest, but the 
polarity and strength of the input can vary. Regulatory outputs of the entity/sensor are not recreated 
for any reporter. As these changes are being made, both the regulatory architecture (Fig. S10E, 
top), which is re-drawn if the levels of any entity/sensor reaches zero, and the ‘phenotype’ as 
captured by the profile of relative concentrations of entities/sensors (Fig. S10E, bottom) can be 
observed. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 



 

SUPPLEMENTARY FIGURES AND FIGURE LEGENDS 

 
Figure S1. Entity-Sensor-Property systems provide a principled way of parsing regulators 
and their interactions in living systems. (A) Schematic of regulatory interactions in a living 
system, highlighting incomplete knowledge, but including some regulators that detect the shape(s) 
of others. Entities that act as sensors (black circles and black shapes) by providing regulatory input 
in response to changes in other entities or that do not provide any regulatory input (blue shape), 
interactions that increase (green arrows) or reduce (magenta bar) a property of downstream 
entities/sensors, interactions with unknown entities/sensors (dotted lines), and the unknown larger 
network (grey shading) are depicted. (B and C) Two ways of parsing the interactors that combine 
some regulators together (y and z in (B), and y, z, and w in (C)) and therefore do not reflect the 
natural properties salient to the system in (A). (D) Deduced regulatory architecture with sensors 
(x, y, z; red) and entities (w; blue) parsed to better reflect the system depicted in (A). Progression 
from the depiction in (B) or (C) to that in (D) requires experiments that consider the separable 
entities (x, y, z and w), sensors (x, y and z), and the sensed properties (y’s square edges for sensor 
x, and its curved surfaces for sensor z) that are relevant for the system.  
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Figure S2. Adding regulation to the 8 simple heritable architectures generates 99 regulated 
architectures, not all of which are heritable. Entities that act as sensors (black circles) or that do 
not provide any regulatory input (blue circles), positive (green arrows) and negative (magenta bar) 
regulatory interactions are indicated. 
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Figure S3. Heritable regulatory architectures with one loop. Loss-of-function perturbations of 
each entity (x, y, or z, if present) in architectures (left top) characterized by sets of parameters that 
support a steady state (left bottom) are illustrated. The behaviour of residual architectures after 
permanent or genetic (middle) and transient or epigenetic (right) changes are illustrated. Period of 
steady state (thick grey line), the point of genetic change (red arrow), duration of epigenetic reduction (red 
bar, for a duration tp = 5 (a.u); with the threshold for observing a defect d = 0.5; and an extent of perturbation 
beyond the threshold p = 0.5), and duration of recovery after perturbation (thin grey line) were simulated. 
Architectures are depicted as in Figure 1 (A, B, C, D, and E depict the heritable regulatory 
architectures A, B, C, D, and E, respectively) with transient reductions in an entity and associated 
interactions depicted using lighter shades. Dotted lines indicate unregulated turnover (in middle) 
or thresholds for observing defects upon reduction in levels of an entity (in right). 

Figure S4. Heritable regulatory architectures with two loops and a shared node. Architectures 
and their responses to perturbations are depicted as in Figure S3 (A and B depict the heritable 
regulatory architectures F and G, respectively). 
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Figure S5. Heritable regulatory architectures with two loops and a shared edge. Architectures 
and their responses to perturbations are depicted as in Figure S3 (A, B, and C depict the heritable 
regulatory architectures H, I, and J, respectively). 
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Figure S6. Heritable regulatory architectures with two loops, a shared node, a connecting 
edge, and up to one negative regulatory interaction. Architectures and their responses to 
perturbations are depicted as in Figure S3 (A, B, C, D, and E depict the heritable regulatory 
architectures K, L, M, N, and O, respectively). 



 

 

Figure S7. Heritable regulatory architectures with two loops, a shared node, a connecting 
edge, and two negative regulatory interaction. Architectures and their responses to perturbations 
are depicted as in Figure S3 (A, B, C, and D depict the heritable regulatory architectures P, Q, R, 
and S, respectively). 
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Figure S8. Heritable regulatory architectures formed by complete graphs with up to two 
negative regulatory interactions. Architectures and their responses to perturbations are depicted 
as in  Figure S3 (A, B, C, D and E depict the heritable regulatory architectures T, U, V, W, and X 
respectively). 



 

 

Figure S9. Heritable regulatory architectures formed by complete graphs with three negative 
regulatory interactions. Architectures and their responses to perturbations are depicted as in 
Figure S3 (A and B depict the heritable regulatory architectures Y and Z, respectively). 
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Figure S10. Key features of the ESP system explorer. A simulation of ESP systems was made 
using the agent-based modeling software NetLogo with controls for making a variety of changes. 
(A) Sliders and buttons for set up and simulation of an ESP system:  link-chance, max-molecules, 
cycle-time, positive-interactions, stasis-level, max-ever-molecules, setup, stop, go, and go forever. 
(B) Parameters for specifying a particular system: system-id, molecule-kinds, perturb-phase, and 
perturb-kind. (C) Buttons and input for making changes to the system during the simulation. 
change-a-node, add-a-node, remove-a-node, remove-link-x-y (node-x, node-y), remove-a-link, 
and link-hold (from-node, to-node, -n-). (D) Buttons and input for adding a reporter of any node. 
add-a-reporter, perfect?, reporter-inactive-fraction, and node-to-report. (E) Representative output 
of changing regulatory architecture (top) and relative amounts of interactors representing 
‘phenotype’ (bottom) over time. See Movie S1 for examples examining impact of changes and 
code (ESP_systems_single_system_explorer_v1.nlogo) for detailed information. 
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Figure S11. Example of a system with long but finite stability. This system (62795) begins with 
6 entities/sensors, but after an early loss of one sensor, the remaining 5 are maintained as part of a 
HRA until 59,882.5 generations. See Fig. S10 and code 
(ESP_systems_single_system_explorer_v1.nlogo) for detailed information. 
 

 

Figure S12. Characteristics of randomly sampled HRAs simulated with partitioning of 
entities during each cell division or generation and periodic perturbations. Top left, Fractions 
of ESP systems that persist with or without heritable epigenetic change for 250 generations when 
simulations were begun with different numbers of molecules. Bottom left, Maximum (grey) and 
median (blue) numbers of entities/sensors in ESP systems at the end of 250 generations when 
simulations were begun with different numbers of molecules. Top right, Maximal numbers of 
positive and negative regulatory interactions at the end of 250 generations when simulations were 
begun with different numbers of molecules. Bottom right, Median numbers of positive and 
negative regulatory interactions at the end of 250 generations when simulations were begun with 
different numbers of molecules.  



 

 
Figure S13. Equivalent representations of a transgenerational feedback loop that can tune 
HRDE-1-dependent heritable RNA silencing. Left, the architecture proposed in Fig. 6D, 
whereby a sensor(s) that promotes an HRDE-1-dependent positive feedback loop is reduced in 
response to changes in a gene or its gene products caused by the activity of the HRDE-1-dependent 
positive feedback loop, making it self-limiting. Middle, An architecture where the feedback from 
the gene to HRDE-1-dependent loop is via the inhibition of an inhibition instead of an activation. 
Right, An architecture as in left, but that includes additional CSR-1-dependent positive feedback 
loops that could amplify the transgenerational inhibition of the HRDE-1-dependent loop. 
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SUPPLEMENTARY MOVIE LEGENDS 

Movie S1. NetLogo run showing the single-system explorer with sample interactions with the 
simulation. 
 
Movie S2. Example ESP system with system-id 46357 without any perturbation. 
 
Movie S3. Example ESP system with system-id 46357 and with loss-of-function perturbations in 
phase 0. 
 
Movie S4. Example ESP system with system-id 46357 and with loss-of-function perturbations in 
phase 1. 
 
Movie S5. Example ESP system with system-id 46357 and with loss-of-function perturbations in 
phase 2. 
 
Movie S6. Example ESP system with system-id 46357 and with loss-of-function perturbations in 
phase 3. 
 
Movie S7. Example ESP system with system-id 46357 and with loss-of-function perturbations in 
phase 4. 
 
Movie S8. Example ESP system with system-id 46357 and with gain-of-function perturbations in 
phase 0. 
 
Movie S9. Example ESP system with system-id 46357 and with gain-of-function perturbations in 
phase 1. 
 
Movie S10. Example ESP system with system-id 46357 and with gain-of-function perturbations 
in phase 2. 
 
Movie S11. Example ESP system with system-id 46357 and with gain-of-function perturbations 
in phase 3. 
 
Movie S12. Example ESP system with system-id 46357 and with gain-of-function perturbations 
in phase 4. 
 
Movie S13. NetLogo run showing an ESP system with regulatory delays and developmental 
timing of cell divisions adapted from experimental results in C. elegans. 
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1. Solution obtained from WolfrumAlpha: 
https://www.wolframalpha.com/input?i2d=true&i=%7B%7BDivide%5Bdx%2Cdt%5D%
7D%2C%7BDivide%5Bdy%2Cdt%5D%7D%7D+%3D%7B%7Ba%2Cb%7D%2C%7Bc
%2Ce%7D%7D%7B%7Bx%7D%2C%7By%7D%7D [most recent access on 21 May, 
2023] 
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