Lecture 15 Functional Genetics

Functional genomics: Identify the function of each and every gene in the genome. Since the characterization of the function of a protein domain in one organism generally provides hint to its function in another organism, the first goal of functional genomics is to identify as many genes as possible in major model organisms

Basic Approaches

A. Forward genetics: Random mutagenesis, screen for traits of interests

Chromosome walking or transposon-tagging

- B. Gene expression profile (analyses of transcriptome)
- C. Reverse genetics: disrupt a particular gene or set of genes with known seq.
- D. Fine structure genetics

Forward and reverse genetics

- Forward genetics starts with identification of interesting mutants
 - Then aims to discover the function of genes defective in mutants
- **Reverse genetics** starts with a known gene and alters its function
 - Then aims to determine the role of the gene from the effects on the organism

Reverse genetic methods

- RNA interference
- Identify gene affected by

Insertional or chemical mutagenesis Then screen for the mutation

• Delete genes by homologous recombination

Can be done in yeast, mouse and flies

RNA interference

RNAi movie www.nature.com/focus/rnai/animations/index.html

•Initially characterized in:

-C. elegans

•Double-stranded RNA injection-named RNAi

-Plants

•Resistance to spread of virus

•Suppression of transgene expression

post-transcriptional gene suppression (PTGS)

•Function of RNAi likely used to detect:

-genome-invading transposable genetic elements and double-stranded (ds) RNA viruses

-Other abnormal gene expression

Diverse organisms display RNAi

- Model animals (*Drosophila*, *C. elegans*, mouse, etc.)
- Non-model animals (cnidaria, beetles, crickets, crustaceans)
- Protozoa (e.g. *Tetrahymena*)
- Dictyostelium
- Plants (e.g. Arabidopsis, maize)
- Fungi (e.g. Neurospora)

Potential Practical Applications of RNA Interference

- Control virus infection
- Analysis of cell biology by silencing specific gene
- Target validation for drug development
- Potentially new therapeutic approaches to treating diseases - a new approach to antisense and new possibilities for gene therapy

Method	Organism	Pros	Cons
dsRNA	C. elegans Drosophila Trypanosomes	 Fast Effective Works in many systems 	 Non-inducible Most effective in embryonic systems
Stem-loop expression 5' 3' dsRNA	C. elegans ⁷⁷ Drosophila ⁵⁵ Trypanosomes ⁷⁸ Plants ⁷⁹	 Stable Inducible Tissue specific 	 Time consuming to generate Cloning can be problematic
Dual promoter 5' Constant of the second seco	Trypanosomes ^{78,80}	 Stable Inducible Tissue specific 	 Time consuming to generate Promoters can silence each other
XIRUS	Plants	 Most common technique in plants 	 Limited to plants at present
Nature Reviews Genetics			

Challenges for siRNAs as a therapeutic agent

Cellular uptake in tissue under physiological conditions

a) Chemical modifications to improve

- 1) Stability in blood
- 2) Tissue redistribution and cellular transport
- 3) Efficient silencing of gene
- b) Specific target site delivery Examples, eye and CNS
- c) Delivery as a complex

Systematic RNAi screens in *C. elegans* and mammalian cells

- In the nematode, *C. elegans*, RNAi is easy to do
 - Inject dsRNA
 - Feed bacteria expressing dsRNA
 - Or soak in solution of dsRNA

• Makes systematic RNAi screens possible

Fraser, 2000-Chromosome I-feeding Gonczy, 2000-Chromsome III-injection Kamath, 2003-Genome-wide feeding Sonnichensen, 2005-Genome-wide injection

Identify gene function by insertional or chemical mutagenesis

1) T-DNA or transposon insertions and PCR-based screens

2) Arabidopsis Tilling project

1. Screen for T-DNA (or Ds) insertion in specific genes

Data-base searches for T-DNA insertions in the genes of interests

2. TILLING (Targeting Induced Local Lesions IN Genomes) Arabidopsis Tilling website:http://tilling.fhcrc.org:9366/

14

Homologouse recombination and gene knock-out in yeast and mouse

(Page 744-746, 852, A.7; A.8; E.8)

Fig. A.8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. A.7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. (a) Construction of a knockout allele in ES cells

Finding the cell with the knockout allele.

Subject culture to drug that kills all cells that do not contain selectable marker.

Survivor cells have knockout allele (1% or less). Begin new culture with survivor cells.

(b)

