Lecture 20 continued: Drosophila embryogenesis

Embrygenesis
Four classes of genes:
Maternal genes
Gap genes
Pair-rule genes
Segment polarity genes
Homeotic genes

Read 826-837Fig. D18-
D27: 19.2; 19.16

"Molecular Biology of the Cell” ed. By
Bruce Albert et al. (free online
through ncbi books)



(a) Distribution of Engrailed protein

Segment polarity genes

(b} Segment polarity genes establish compartment borders.
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(a) The segmentation hierarchy
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Cytoplasmic Products of maternal-effect
polarity genes establish morphogenic
(maternal gradients in the egg.
effect) .
Gradients ensure that gap genes
are expressed only in certain
Gap broad regions of the embryo.

Gap genes activate
pair-rule genes in
a series of seven stripes.
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Levels of pair-rule gene
products restrict the expression
of segment polarity genes to a
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Fig. D.25

series of 14 stripes, one per segment.

(b) Mutations in segmentation genes cause segment loss.
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Segment polarity genes are lowest level of
segmentation hierarchy

Mutations in segment polarity genes cause
deletion of part of each segment and its
replacement by mirror image of different part
of next segment

Regulatory system complex

- Transcription factors encoded by pair-rule genes
initiate pattern by regulating segment polarity genes

- Interactions between cell polarity genes maintain
periodicity later in development
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Each segment establishes own identity through
activation of homeotic genes

(a) Effects of bx or pbx mutations
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Antennapedia Complex and Bithorax Complex

Homeotic selector genes

- Two clusters of genes on
third chromosome -
antennapedia complex and
bithorax complex

- Responsible for
determining segment
identity

- All encode Homeobox
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Chromosome 3
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Figure 21-43. The patterns of
expression compared to the
chromosomal locations of the
genes of the Hox complex. The
sequence of genes in each of the
two subdivisions of the
chromosomal complex
corresponds to the spatial
sequence in which the genes are
expressed. Note that most of the
genes are expressed at a high
level throughout one
parasegment (dark color) and at
a lower level in some adjacent
parasegments (medium color
where the presence of the
transcripts is necessary for a
normal phenotype, light color
where it is not). In regions where
the expression domains overlap,
it is usually the most “posterior”
of the locally active genes that
determines the local phenotype.

(From Bruce Albert Book)
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Lecture 21 Mouse (Mus musculus)
A Model for studying human diseases

Read 845-862
Fig. E3, 5, 6, 8, 9, 10, 11, 14, 15, 16, 17



Table E.1

TABLE E.1 comparison of Mice and Humans

Trait

Mice

Average weight

Average length

Genome size

Haploid gene number
Number of chromosomes
Gestation period

Age at puberty

Estrus cycle

Life span

30g

10 cm (without tail)
-3,000,000,000 bp
~50,000

19 autosomes + X and Y
3 weeks

5-6 weeks

4 days

2 years

77,000g (170 Ib)

175 cm

—3,000,000,000 bp

~50,000

22 autosomes + X and Y

Average, 38 weeks (8.9 maonths)
Average, 624-728 weeks (12-14 years)
Average, 28 days

Average, 78 years




Synteny
Between

mouse and

human
genome

Fig. E.3
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Fig. E.5 Mouse embryogenesis
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Preimplantation development and Implantation
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Cleavage stage cells are totipotent
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(a) Identical quadruplets
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(b)

Two four-cell embryos
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Chimeric embryo

Chlmenc mouse

Embryo 1

Fig. E.6 Chimera

Embryo 2



Knocking out a gene in ES cells

{a) Construction of a knockout allele in ES cells Finding the cell with the knockout allele.
Subject culture to drug that kills all cells that do not contain
Early blastocyst Clone containing gene of interest ~ selectable marker.
_

(% 10,000)
——r El s s al
Build knockout construct by
adding in selectable marker.

i f . Survivor cells have knockout allele (1% or less).
D —— 3 Begin new culture with survivor cells.
Marker disrupts transcription
Culture into millions unit.
of embryonic-like = -
(ES) cells. — [

-—— Add cloned DMNA to
culture of cells.

(b)

Homologous recombination
Added DMNA construct
e e
ES cell chromosome with wild-type allele

L ] L}
ES cell chromosome with knockout allele




Using transgenic tools

(1) verify gene cloning

Two one-cell female mouse embryos (with two X chromosomes)

Pronuclei

Inject SRY DNA

No injection l

19 pairs autosomes, 19 pairs autosomes,
two X chromosomes two X chromosomes,
and SRY transgene
FEMALE MALE

Fig. E.9



Using transgenic technology
(2) characterize regulatory regions
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Mouse genomic clone E. coli p-galactosidase gene

Coding region
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region
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|
Mouse E. coli

Inject transgene construct into mouse embryos.
Place embryos into oviduct of receptive female.

Mate transgenic animal to establish pregnancy.
Recover and stain fetuses to detect }-gal activity.

\

- 7 -

DNA construct
containing mouse
regulatory region of
interest 1s attached to E.
coli reporter gene.

Function ascertained by
3-gal expression in
transgene fetus

Fig. E..11



Using transgenic technology
(3) mis-express genes

(@ (1) The myc locus found in the mouse genome.

Promoters —| W Exons

3] L — — 3 . "
— TranSQer\|c
expression of myc
(2) Hybrid DNA construct containing the myc coding region 1
regulated by an inducible promoter gene PrOY'des
e ——— information on
Inducibl ) .
pnrolrjr?cl)te? gene S r'Ole N

rrrrrrr tumor formation
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Fig. E.14a-c

Using transgenic technology
(4) Gene knockouts to create mouse model for human diseases
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(c) Early blastocyst recovered from

mating between two agouti parents
of the 129/ Svd strain

(a) Plasmid clone containing portion of
mouse CFTR locus with first exon
5' —- _- 3'
exon 1
(b) Develop DNA construct
by adding selectable marker (neo)
and TK gene to CFTR restriction

fragments
. ——
neo — TK
— S
exon 1
— —l Develop ES cell culture by
R ———— placing blastocysts in petri

neo TK dish to undergo many cell
divisions without differentiation

|

ES culture
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Flg. E.14d-e {d) Add cloned DNA knockout
construct to culture
of ES cells

DNA construct can

integrate through
HOMOLOGOUS RECOMBINATION o diftesent moctanisms  INTEGRATION INTO RANDOM LOCUS

BT A
e — =

exon 1

>
3

TK,

endogenaous
random locus

disrupted CFTR exon 1

* neo TK

neo

Expose ES culture to neomycin.
Remaining cells contain CFTR construct
integrated either randomly or homologously

Expose colonies to
ganciclover. TK-containing

cells eliminated
j Transfer remaining

colony to plate.
Begin new culture.

(e) Cell contains disrupted copy of CFTR exon 1
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(f) Mate B6 black mice. Embryos recovered
from pregnant BG female.

(+/+)

10 ES cells are placed in embryos which
are returned to uterus of B6 foster mother.

Colo ny of ES cells hETE!I‘CIZ]FQDLIS
for a knockout of the CFTR locus (+/-)

Embryos develop into live-born mice

(+/+)

Chimera o
[agouti (+/=)] and [black {+/+)]

Mate chimera with B6 black mouse

[agouti (+/-)] and [black (+/+)] black (+/+)
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(9) Three types of offspring

|
s agouti (+/-) “agouti (+/+) black (+/+)

Use DNA analysis to
(h) identify male and female agouti animals that are heterozygous
for the knockout allele of CFTR (+/-) and breed them together

(+/-)

Offspring homozygous
for mutant allele serve

as models for CF disease
state.

Use DNA analysis to identify
offspring homozygous for
knockout allele to serve as
models for cystic fibrosis
disease state



