Lecture 8: Molecular Markers and mapping

DNA polymorphism: the basis of molecular markers Methods of detection and application (diagnosis, finger-printing)

Molecular mapping

Read 371-387 Fig. 11.3; 11.4; 11.5; 11.6; 11.7; 11.8; 11.10; 11.11; 11.12; 11.13; 11.14; 11.15

Table 11.1

Four classes of DNA polymorphisms

TABLE 11.1 Classes of DNA Polymorphisms						
Class	Size of Locus	Number of Alleles	Number of Loci in Population	Rate of Mutation	Use	Method of Detection
SNP	Single base pair	2	100 million	10 ⁻⁹	Linkage mapping	PCR followed by ASO hybridization or primer extension
Microsatellite	30–300 bp	2–10	200,000	10 ⁻³	Linkage mapping	PCR and gel electrophoresis
Multilocus Minisatellite	1–20 kb	2–10	30,000	10 ⁻³	DNA fingerprinting	Southern blot and hybridization
Small Changes in DNA Content (deletions and duplications)	1–100 bp	2	N/A	<10 ⁻⁹	Linkage mapping	PCR and gel electrophoresis

Single nucleotide polymorphism (SNP)

- Single base-pair substitutions
- Arise by mutagenic chemicals or mistakes in replication
- Biallelic only two alleles
- Ratio of alleles ranges from 1:100 to 50:50
- 2001 over 5 million human SNPs identified
- Most occur at anonymous loci
- Mutation rate of 1 X 10⁻⁹ per locus per generation
- Very few are thus new mutation in the species
- Useful as DNA markers

Microsatellites

- 1 every 30,000 bp
- Repeated units 2 5 bp in length
- Mutate by replication error
- Mutation rate of 10⁻³ per locus per gamete
- Useful as highly polymorphic DNA markers

Fig. 11.3

4

Minisatellites

- Repeating units
 20-100 bp long
 - Total length of 0.5 – 20 kb
- 1 per 100,000
 bp, or about
 30,000 in whole
 genome

Recombinant products

Deletions, duplications, and insertions

- Expand or contract the length of nonrepetitive DNA
- Small deletions and duplications arise by unequal crossing over
- Small insertions can also be caused by transposable elements
- Much less common than other polymorphisms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Unequal crossing-over

Figure 11.5

RFLP: Restriction Fragment Length Polymorphism

The McGraw-Hill Companies, Inc. Permission required for reproduction

• SNP detection using

southern blots

Restriction fragment length polymorphisms (RFLPs) are size changes in fragments due to the loss or gain of a restriction site

Heterozygous with alleles 1 and 2

Homozygous for allele 2

Homozygous for allele 1

Blotting Hybridization X-ray radiography

ht © The McGraw-Hill Companies, Inc. Permission required for reproduction or (a)

Normal allele (A)

CAPS

- Must have sequence on either side of polymorphism
 - Amplify fragment
 - Expose to restriction enzyme
 - Gel electrophoresis
- e.g., sickle-cell genotyping with a PCR based protocol

Fig. 11.7

SNP detection by ASO

Fig. 11.8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. (a) 1. 21-base probe/target hybrid with no mismatches

- Very short probes (<21 bp) specific which hybridize to one allele or other
- Such probes are allele-specific oligonucleotides (ASOs)

Large-scale ASO analysis with microarrays

nucleotide position under analysis

Primer extension to detect SNPs

Detecting microsatellite markers

Fig. 11.12abc

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. (a) Determine sequences flanking microsatellites.

(b) Amplify alleles by PCR.

(c) Analyze PCR products by gel electrophoresis and staining.

Microsatellite allele detection by PCR

Fig. 11.12d

17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Basic structure of the HD gene

(b) Some alleles at the HD locus

Huntington's disease is an example of a microsatellite triplet repeat in a coding region

18

Minisatellite detection and DNA fingerprinting

- 1985 Alec Jeffreys made two key findings
 - Each minisatellite locus is highly polymorphic
 - Most minisatellites occur at multiple sites around the genome
 - DNA fingerprint pattern of simultaneous genotypes at a group of unlinked loci
 - Use restriction enzymes and southern blots to detect length differences at minisatellite loci
 - Most useful minisatellites have 10 20 sites around genome and can be analyzed on one gel

Fig. 11.14

fcGraw-Hill Companies, Inc. Permission required for reproducti

1 2 U C D 3 4 5 6 7 8 9 1011 12

Dolly the sheep is a clone of adult udder cell

- DNA fingerprints can identify individuals and determine parentage
- E.g., DNA fingerprints confirmed Dolly the sheep was cloned from an adult udder cell
- Donor udder (U), cell culture from udder (C), Dolly's blood cell DNA (D), and control sheep 1-12