3. Transport can be active or passive.

*Passive transport is movement down an electrochemical
gradient.

*Active transport is movement against an electrochemical
gradient.

What is an electrochemical gradient?
How is it formed?
Passive and active transport of ions result in electric

potential difference across membranes.

*Movement of an uncharged mol Is dependent on conc. gradient alone.
*Movement of an ion depends on the electric gradient and the conc. gradient.
«Diffusion potential-

Pump potential-

How do you know if an ion is moving uphill or downhill?
Nernst Eq

What is the driving force for uphill movement?
A) ATP ; b) H+ gradient

F 6-3 Taiz. Microelectrodes are used to measure membrane
potentials across cell membrane
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6-5. Pump potential and diffusion potential.
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How can we determine whether an ion moves in or out by
active or passive transport?

Nernst equation states that at equilibrium the difference in
concentration of an ion between two compartments is
balanced by the voltage difference. Thus it can predict the ion
conc at equilibrium at a certain 4E.

Very useful to predict active or passive transport of an ion.

Tab 6-1, Taiz . Using the Nernst equation to predict ion conc. at
equilibrium when the Cell electrical potential, Ay = -110 mV

Ext Conc. lon Internal concentration (mM)
observed Nernst (Predicted)

1mM K* 75 mM 74

1mM Na* 8 mM 74

1mM Caz+ 2mM 5,000

02mM  Mg* 3 1,340

2mM NO;- 5mM 0.02

1 Cl- 10 mM 0.01

1 H,PO, - 21 0.01

Fig. 6-4, Taiz. Passive and active transporters.

Plasma membrane

Summary: In general
Cation uptake: passiv

Cation efflux: active

—

Anion uptake: active

Anion release: passive




6-7. Proteins catalyze transport.
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6-10. Secondary active transport
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Outline: Major Transport Proteins in Plants

1. Primary Pumps:

H*-pumping ATPases are the major ion pumps in plants
Ca-pumps. Cu, Zn. Few ions moved by pumps.

2. Secondary active transport: H*-coupled cotransport

Energy from H+ gradient is used to drive uphill movement of other
nutrients. E.g. ions, sugars, amino-acids,

3. Channels allow rapid, passive transport of ions and metabolites.

4. Water Channels or AQUAPORINS in membranes that conduct
large volumes of water rapidly.

5. ABC transporters pump organic molecules. E.g. auxins, Cd-X
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H* pumps generate a proton electrochemical gradient

3 H* pumps:
PMH*-ATPase H" ——

Vac H*-ATPase

Vac H*-PPase

pH55 | pH7.3

Why are H* pumps important?
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6-17. Taiz. PM-H+-ATPase acidify the cell exterior
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Model of a pump at work

6-16 Taiz. Vacuolar H+-ATPase acidify endomembrane compartments:
vacuole, Golgi, vesicles.
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Evidence for H* pumps
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Expt. Evidence for H* pumps.

Importance of H* pumps.
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How will uptake of A affect the membrane
potential?

pH gradient?




Active transport of many ions and metabolites is dependent on
Secondary active transport: H*-coupled cotransport (Fig. 6-11)

(A) symport H*(8) Antiport

OUTSIDE OF CELL M+

®® @@

High

High

Electrochemical ® @ @

potential gradient
of substrate A CYraRLAaM

Electrochemical

of substrate B

potential gradient

Model of an antiporter

Al @) (a] (2]

OUTSIDE OF CELL

(63

-~

™ Phasmal
Concentration
gradients ittt
for 5 and H*
T3
e
&

Taiz. Evidence that Glucose uptake depends on H*-coupled glucose
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Channels allow rapid passive diffusion of ions.
Fig. 6-15. K* enters cells via a gated channel.
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Aguaporin: water channel

Proteins that conduct fast diffusion of water down
its water potential gradient.

Experimental evidence.

How do you prove this?

1. Express a candidate gene in an animal cell.
2. Putcell in dilute solution.

3. Measure swelling....... Until boom!

Cells control their osmotic conc and cell vol.

15-32. Evidence for a water channel protein (aquaporin)
Microinject CHIP 28 mRNA into oocyte

0.5 min 1.5 min 2.5 min 3.5 min

Transfer cell from 0.2 M -->0.035 M

control

Control oocyte has low permeability to water.

Nobel Laureates in Chemistry 2003

"for discoveries concerning channels in cell membranes*

Agre McKinnon

"for the discovery of “for structural and

water channels* mechanistic studies of
ion channels”

Putting all the info. together
How is a nutrient transported into roots?

How do guard cells open and close?

How does a mineral nutrient move from root to leaf?

a. Movement into root.
Consider the mode of transport at each stage.
Passive, active, and type of transport protein?

b. Up the xylem in the stem to the leaf

c. Movement into mesophyll.

Solutes move through apoplast and symplast

A)

Middle lamella

Plasma membrane
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Xylem loading by xylem parenchyma cells.




18-8. Stomata. Open and closed state
What controls opening? How? Increase in turgor pressure

What controls closing?

18.9 Stomatal opening tracks photosynthetic active radiation at the leaf surface
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18.16 Daily course of changes in stomatal aperture
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Light stimulates stomatal opening

How?

Draw on board

18.13 Acidification of a suspension medium of guard cell
protoplasts of V. faba
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» Membrane potential hyperpolarize.

» K+ conc. Increase 100 mM - 400 mM
Anions: Cl- and malate increase

Water potential drops, water enters
Guard cells increase their turgor pressure
« Stomata open.




Closure

* How?

Closing stomatal aperture: the long-term efflux of both anions and K+ from guard cells

cogtnblf(t’%s CIR a[nﬁelpﬁn%ft\%%asrd cell turgor, leading to stomatalbclomgqgna”ing pathways

K¥in channels

From Schroeder and Allen. 2001.
Nature

Lab. - guard cell movement

1. Test effect of light versus dark on stomatal
aperture

2. Determine which ion or solute is needed for
stomatal opening: KCI, choline Cl, or mannitol

3. Determine the effect of a stress hormone, ABA, on
stomatal aperture.

lon Pumps in Arabidopsis

3 H+ pumps:
PM H+-ATPase
Vac H+-ATPase
Vac H+-PPase

pH5.5
Vacuole

Caz+

Plastid

pH5.5

energy from proton gradient is used for




