
Photosynthesis is a light-driven redox process.

1. The entire process occurs in several steps, because there is insufficient energy to boost e- from H₂O directly into NADP⁺.

$$\mathbf{H_2O} + \mathbf{NADP^+} + \mathbf{ADP} + \mathbf{P_i} --- > 1/2 \ \mathbf{O_2} + \mathbf{NADPH} + \mathbf{H^+} + \mathbf{ATP}$$

- O₂ evolving organisms have 2 photosystems that operate in series.
- 2. Organisms obtain energy from ox-red reactions.
- 3. Plants use 2 photosystems. Each PS has a different function.
- A) PSII: pull electrons from water
- b) PSI: e- reduce NADP+ to form reducing power
- 4. Two reaction centers are connected by an electron transport chain
- 5. Electron transport and water splitting generates a proton gradient that is used to make ATP.

Organisms obtain energy from oxidation/ reduction reactions

1. Tendency for a redox reaction to proceed depends on the difference in energy of the transferable electron in the two molecules.

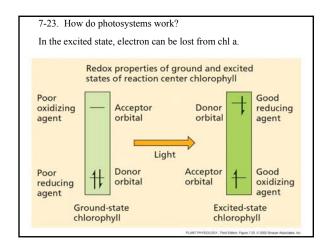
The reducing potential is a measure of the readiness with which an atom takes up an electron. Measured as a voltage.

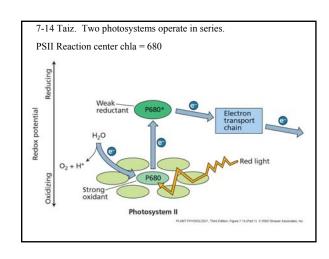
If reducing potential is -, I.e. lower affinity for electron than $H_2/2H^+$

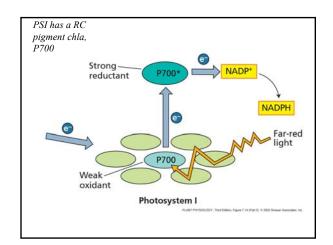
 $\Delta E = E (acceptor) - E (donor)$

Table. Mid point redox (reducing) potentials of selected redox couples from respiration and photosynthesis.

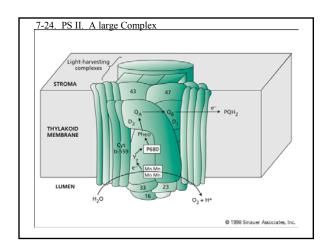
	Em (V)
Ferredoxin ox/red	-0.42
2H+/NAD+/ NADH	-0.32
NADP+ +2H+/ NADPH + H+	-0.32
2H ⁺ /H ₂	0
Ubiquinone	+0.040
Cyt c ox/cyt c red	+0.220
$S + 2H + /H_2S$	+0.23
$1/2O_2 + 2H^+/H_2O$	+0.82

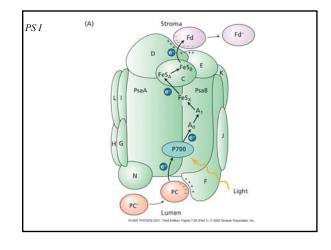

Useful equations to analyze energy changes in redox reactions:

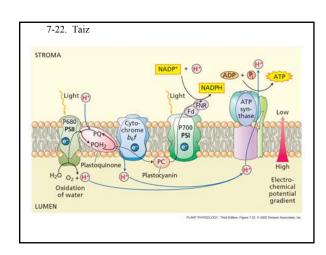

 $\Delta E = E \text{ (acceptor)} - E \text{ (donor)}$ E = reducing potential (V)


 $\Delta G = -zF\Delta E$ $\Delta E = difference in the reducing potential (v)$

z = number of electrons transferred


F = Faraday's constant, 23 kcal/V.mol

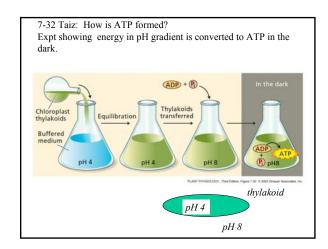


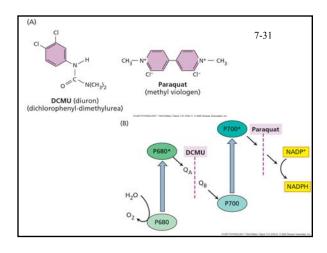


7-24 Taiz. Plastoquinone is a mobile 2-electron carrier

(A)

$$H_3C$$
 H_3C
 H_3C


How is ATP formed?


Electron transport and water splitting form a proton motive force (pmf)

PMF is used to make ATP

Where are protons produced?

- 1. Splitting of water
- 2. PQ oxidation

