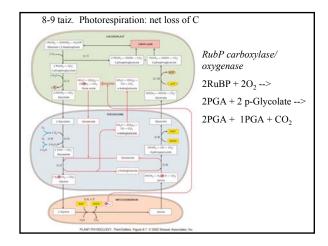
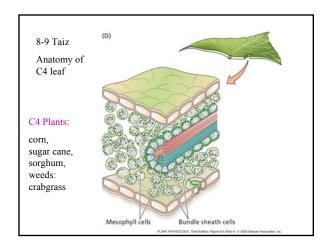


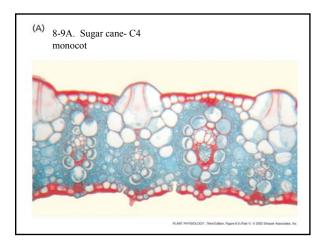
PHOTORESPIRATION: A process where O_2 is consumed and CO_2 is given off in light by photosynthetic tissues (leaf). Why? O_2 consumption by RuBP Case/oxygenase

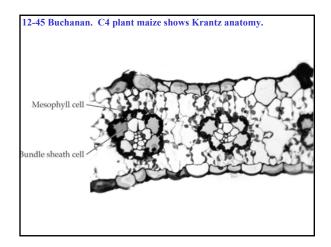
C4 METABOLISM: A mechanism to concentrate CO₂ in the chloroplasts to reduce RUBP oxygenase activity.

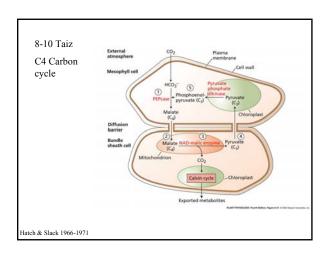

C4 PLANTS: e.g. Corn, sugar cane, many weeds

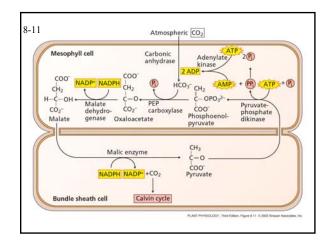
Carboxylation: in MESOPHYLL CELL
 CO₂ + PEP (3c)---> OAA (c4) ---> MAL (c4)
 Mal is transported to BUNDLE SHEATH cells


2. Decarboxylation: MAL (c4) ---> CO₂ + PVA


3. C3 reduction: 3CO₂ --> G3P
Transport of PVA back to MESOPHYLL


4. Regeneration of PEP: pva ---> pep

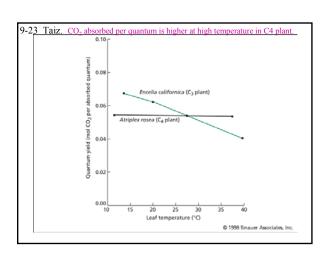


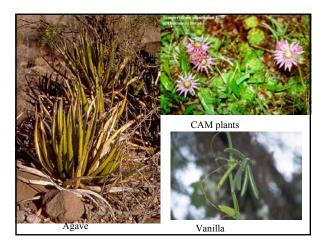


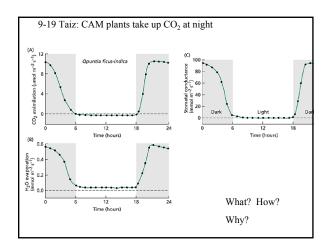
1. Carboxylation: in MESOPHYLL CELL CO₂ + PEP (3C)---> OAA (c4) ---> MAL (c4)

Mal is transported to BUNDLE SHEATH cells
 Decarboxylation: MAL (c4) ---> CO₂ + PVA
 C3 reduction: 3CO₂ --> G3P
 Carboxylation- rubisco
 reduction
 regeneration

3. Transport of PVA back to **MESOPHYLL** Regeneration of PEP: pva ---> pep


Ecological significance of C4 plants


- 1. C4 plants have low CO₂ compensation conc.
- 2. C3 plants have high transpiration ratio: water loss/CO₂ uptake
- Quantum yield: CO₂ fixed/mol quantum
 is higher in C4 plants at high temp and high light

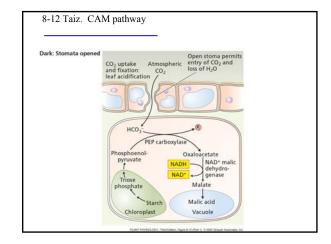

Conclusion:

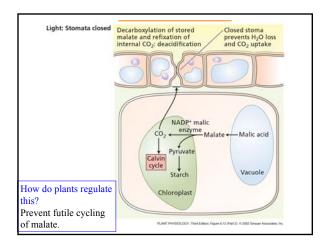
C4 plants are not always more competitive than C3 plants.

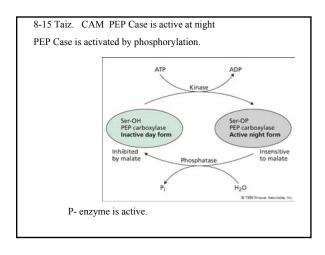
C4 have an advantage at high temp, high light, and low water conditions.

CAM (Crassulacean Acid Metabolism) plants fix CO₂ at night

NIGHT

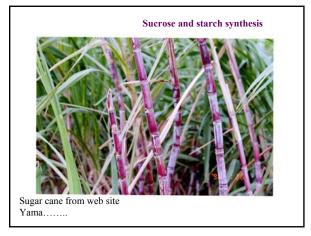

PEP Case


- 1. Carboxylation: PEP + CO_2 ---> OAA --> MAL
- 2. Mal is stored in the vacuole


DAY

- 3. Mal is transported back to the cytoplasm
- 4. Decarboxylation: MAL + NADP+ -(*NADP MALIC ENZYME*) -> PVA + CO₂ + NADPH
- 5. Carbon Reduction Cycle: $CO_2 \rightarrow PGA \rightarrow HEXOSE$
- 6. Regeneration of PEP:

 $PVA + ATP + Pi-(PYRUVATE\ DIKINASE) -> PEP + AMP + PPi$


Regulation of CAM

- 1. PEP Case: is active at night and shuts down in the day.
- 2. Mal product inhibits PEP Case in the day
- 3. Malic enzyme is active in the day (Decarboxylation).

Summary

CAM reduce water loss by separating reactions in time.

CAM plants are suited to dry habitats.

Rice from website of Yama.....

Synthesis, Export and Storage of Photosynthetic Products (or increasing starch in potato chips)

Synthesis:

a. Starch synthesis in the chloroplast: G3P--> starch

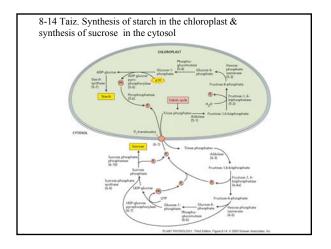
b. Sucrose synthesis in the cytoplasm of mesophyll cells

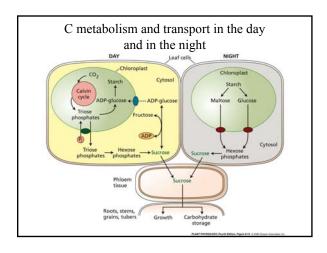
G3P moves into the cytoplasm. G3P--> --> SUC

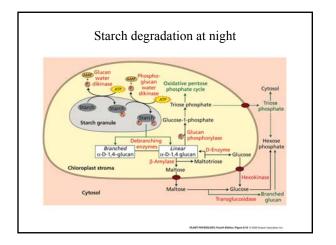
c. Cellulose synthesis

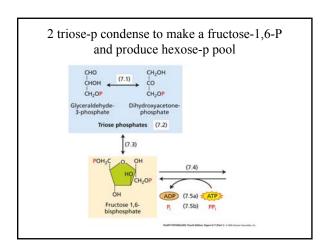
Transport

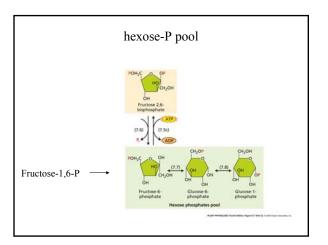
Suc is exported to sinks via the phloem.

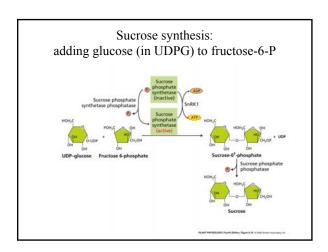

Fate of sucrose in sinks:

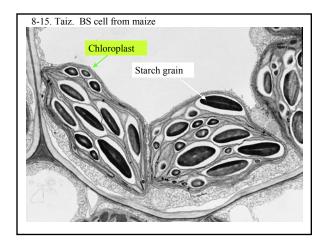

a. -Suc. --> Hexose --> Respiration & Synthesis

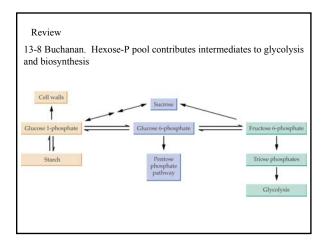

b. -Suc. --> Hexose --> Starch for storage


Regulation of sucrose or starch synthesis depends on how G3P is distributed.


Photosynthate partitioning determines the harvest index.

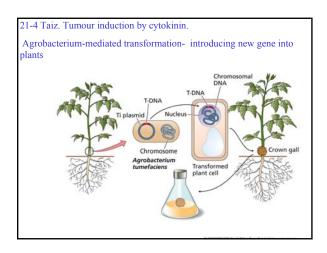






Genetic engineering: Increase starch content in potato chips

How?


Increase enzyme forming ADPG

Overexpress enzyme in potato

Method

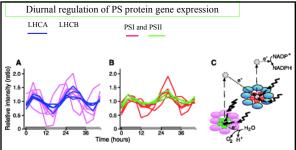
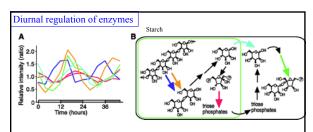
- 1. Plasmid containing gene ADPG Ppase
- 2. Introduce into Agrobacterium tumefaciens
- 3. Transform plants with bacteria carrying gene
- 4. Gene integrates into plant chromosome.

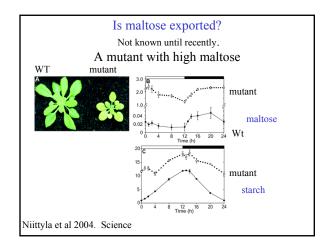
J Preiss

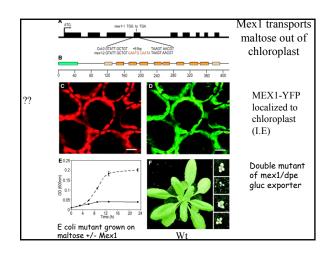
Box 21-1 Taiz, Regenerating whole plants from transgenic cells or tissues. Antibiotic resistance gene Engineered Ti plantid Graning Gree Chromaton (gree Graning Gree Graning Gran

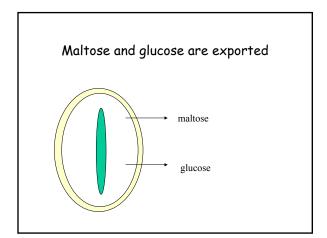
Concerns of GM-modified crops

- •Antibiotic resistance markers used for selection --> lead to antibioticresistance bacteria
- •Allergens or toxins introduced


Figure 1. Photosynthesis gene expression peak near the middle of the subjective day.


Harmer SL et al 2000. Science. 0 h = 6 a.m.



Genes encoding starch-mobilizing enzymes peak during the subjective night. (A) Cycling genes encode a putative starch kinase (accession number AAD31337) that is related to potato R1 protein (38) (dark blue); a -amylase (A1250341) (gold); putative fructoss-bisphosphate aldolase, plastidic form (AAD14543), and putative fructoss-bisphosphate aldolase, predicted to be plastidic (AAD23681) (red); a putative sugar transporter (AAD03450) (light blue); and a sucrose-phosphate synthase homolog (T04062) (green). (B) Model for the enzymatic functions of these gene products in the mobilization of starch. Colored arrows indicate the function of the corresponding gene indicated in (A). The chloroplast is bounded by a green box and the cytoplasm by a black box.

Harmer et al 2000 Science

