9-18. Taiz. Plants differ in their ability to fix ambient CO,

Photorespiration: light-dependent O, uptake and CO, release
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PHOTORESPIRATION: A process where O, is consumed and CO, is
given off in light by photosynthetic tissues (leaf).
Why? O, consumption by RuBP Case/oxygenase

C4 METABOLISM: A mechanism to concentrate CO, in the
chloroplasts to reduce RUBP oxygenase activity.
C4 PLANTS: e.g. Corn, sugar cane, many weeds

1. Carboxylation: in MESOPHYLL CELL
CO, + PEP (3¢)---> OAA (c4) ---> MAL (c4)

Mal is transported to BUNDLE SHEATH cells

2. Decarboxylation : MAL (c4) ---> CO, + PVA

3. C3 reduction: 3CO, --> G3P

Transport of PVA back to MESOPHYLL

4. Regeneration of PEP: pva ---> pep

8-9 taiz. Photorespiration: net loss of C

RubP carboxylase/
oxygenase

2RuBP + 20, -->
2PGA + 2 p-Glycolate -->
2PGA + 1PGA + CO,

C4-Sorghum & Atriplex &

8-9 Taiz

Anatomy of
C4 leaf

C4 Plants:

corn,

sugar cane,
sorghum,
weeds:
crabgrass

Mesophyll cells Bundle sheath cells
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12-45 Buchanan. C4 plant maize shows Krantz anatomy.

8-10 Taiz
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9-23 Taiz. CO, absorbed per quantum is higher at high temperature in C4 plant.
010~
Ecological significance of C4 plants %
0.08 -
1. C4 plants have low CO, compensation conc. B
. L . 2 e Encelia califarnica (€ plant)
2. C3 plants have high transpiration ratio : water loss/CO, uptake 2 T — o
C 006 T
3. Quantum yield: CO, fixed/mol quantum g. Atrplex rosen (Ca lant)
e . . v ~
is higher in C4 plants at high temp and high light £ oul ~—
Conclusion: E 002}
C4 plants are not always more competitive than C3 plants.
C4 he'n'/e an advantage at high temp, high light, and low water oot T TR
conditions. Leaf temperature {'C)
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CAM plants

Vanilla

9-19 Taiz: CAM plants take up CO, at night

o

CAM (Crassulacean Acid Metabolism) plants fix CO, at night

NIGHT: PEP Case
1. Carboxylation: PEP + CO, ---> OAA --> MAL
2. Mal is stored in the vacuole

DAY

3. Mal is transported back to the cytoplasm

4. Decarboxylation:
MAL + NADP+ «(NADP MALIC ENZYME) ->
PVA + CO, + NADPH

5. Carbon Reduction Cycle: CO, -> PGA -> HEXOSE

6. Regeneration of PEP:
PVA + ATP + Pi-(PYRUVATE DIKINASE)-> PEP +AMP + PPi
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8-12 Taiz. CAM pathway
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8-15 Taiz. CAM PEP Case is active at night
PEP Case is activated by phosphorylation.
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Regulation of CAM
1. PEP Case: is active at night and shuts down in the day.
2. Mal product inhibits PEP Case in the day

3. Malic enzyme is active in the day (Decarboxylation).

Summary
CAM reduce water loss by separating reactions in time.

CAM plants are suited to dry habitats.

Sucrose and starch synthesis

Rice from website
of Yama.......

Synthesis, Export and Storage of Photosynthetic Products
(or increasing starch in potato chips)

Synthesis:

a. Starch synthesis in the chloroplast: G3P--> starch

b. Sucrose synthesis in the cytoplasm of mesophyll cells

G3P moves into the cytoplasm. G3P--> --> SUC

c. Cellulose synthesis

Transport
Suc is exported to sinks via the phloem.

Fate of sucrose in sinks :
a. -Suc. --> Hexose --> Respiration & Synthesis
b. -Suc. --> Hexose --> Starch for storage

Regulation of sucrose or starch synthesis depends on how G3P is
distributed.
Photosynthate partitioning determines the harvest index.

8-14 Taiz. Synthesis of starch in the chloroplast &
synthesis of sucrose in the cytosol

C metabolism and transport in the day
and in the night
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Starch degradation at night
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13-8 Buchanan. Hexose-P pool contributes intermediates to glycolysis
and biosynthesis
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Genetic engineering:
Increase starch content in potato chips

How?
Increase enzyme forming ADPG

Overexpress enzyme in potato

Method

1. Plasmid containing gene ADPG Ppase

2. Introduce into Agrobacterium tumefaciens

3. Transform plants with bacteria carrying gene
4. Gene integrates into plant chromosome.

21-4 Taiz. Tumour induction by cytokinin.

Agrobacterium-mediated transformation- introducing new gene into
plants
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Box 21-1 Taiz. Regenerating whole plants from transgenic cells or

tissues.
Anbiotit
[OEAEE pnpneeeaTipamd  amign
Forcign - e ntibiatic
aeee - — T e gene
O PRI Y I §§ \'s
o || A A | \"\-\ T
| | Transtemed _"'f
A 5)18 . — Cuhured celh on
“obaceo plant cel — g m comsRing
Chromatin o plant. o o
liont chremoromes b tishae culture — o
>
[
Plantiet K,r [ A
an % |
SN e
T ™ _ @ |
gl Ty £ Sieinten
T Traretormed el
i from whele plant.
Tobawo plant.
© 1936 Sinauer Associates, Ind

Concerns of GM-modified crops

*Antibiotic resistance markers used
for selection --> lead to antibiotic-
resistance bacteria

*Allergens or toxins introduced

Diurnal regulation of PS protein gene expression
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Figure 1. Photosynthesis gene expression peak near the middle of the
subjective day.

Harmer SL et al 2000. Science. 0 h=6 a.m.

Diurnal regulation of enzymes ‘

Starch

Genes encoding starch-mobilizing enzymes peak during the subjective night. (A) Cycling
genes encode a putative starch kinase (accession number AAD31337) that is related to potato R1
protein (38) (dark blue); (AJ250341) (gold); putative fructose-bisphosphate aldolase,
plastidic form (AAD14543), and putative fructose-bisphosphate aldolase, predicted to be
plastidic (AAD23681) (red); a putative sugar transporter (AAD03450) (light blue); and a -
homolog (T04062) (green). (B) Model for the enzymatic functions of these
gene products in the mobilization of starch. Colored arrows indicate the function of the
corresponding gene indicated in (A). The chloroplast is bounded by a green box
and the cytoplasm by a black box.

Harmer et al 2000 Science




Is maltose exported?

Not known until recently.
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