

N Assimilation:

Only plants and microorganisms are able to obtain N from both air and soil.. N CYCLE Two ways plants convert available N to a biological useful form. I. Biological N Fixation: N₂ ---> NH₃ II. NO₃ Reduction: NO₃ ---> NH₄+

NH4+ --> Amides or Ureides --> Amino acids --> Proteins

NITRATE REDUCTION

All plants can take up N in the form of NH₄⁺ and Nitrate (NO₃⁻). Nitrate must be reduced to NH₃⁺ before it can be incorporated into amino acids, proteins and nucleic acids. a. Nitrate Reductase NO₃⁻ + NADPH + H⁺ ------> NO₂⁻ + NADP + H₂O b. Nitrite Reductase NO₂⁻ + 6 H_{red}⁺ 6H⁺----> NH₄⁺ + 2H₂O NH₄⁺ is assimilated into organic N before it can be exported. NH₄⁺ is incorporated into

I. Amides (ASP-NH₂) or II. Ureides And then transported elsewhere. Amides or Ureides --> AMINO ACIDS ---> PROTEINS

Amides or Ureides ---> NUCLEIC ACIDS --> DNA, RNA

NITRATE REDUCTION

All plants can take up N in the form of NH_4^- and nitrate (NO_3^-). Nitrate must be reduced to NH_3^+ before it can be incorporated into amino acids, proteins and nucleic acids.
 Nitrate Uptake into plant: H⁺/NO₃ symport NO₃ is stored in vacuoles for use later
2. Two enzymes reduce $NO_3 \rightarrow NH_3$
a. Nitrate Reductase
$NO_3^{-} + NADPH + H^{+} - NO_2^{-} + NADP + H_2O$
b. Nitrite Reductase
Leaf plastid: $NO_2^- + 6 Fd_{red}^- + 8H^+> NH_4^+ + 2H_2O$
Root cytoplasm: $NO_2^+ 3NADPH + 5H^- > NH_4^+ + 2H_2O + NADP+$ Two enzymes use a lot of reducing energy
3. NH_3 or NH_4 + is used directly> amino acids
O? Energy costly. Where does reducing power come from?

Mini-review Reference

Gloria Coruzzi- and Daniel R. Bush

Plant Physiol, January 2001, Vol. 125, pp. 61-64

Nitrogen and Carbon Nutrient and Metabolite Signaling in Plants

Approach: Identify all NO3-induced genes using microarray

N Assimilation- Summary:

Only plants and microorganisms are able to obtain N from both air and soil.. N CYCLE Two ways plants convert available N to a biological useful form. I. Biological N Fixation: N₂ ---.> NH₃ II. NO₃⁻ Reduction: NO₃⁻ ---> NH₄+ NH4+--> Amides or Ureides --> Amino acids --> Proteins

NITRATE REDUCTION

All plants can take up N in the form of NH₄⁺ and Nitrate (NO₅). Nitrate must be reduced to NH₄⁺ before it can be incorporated into amino acids, proteins and nucleic acids. a. Nitrate Reductase $NO_3^- + NADPH + H^+ - NO_2^- + NADP + H_2O$ b. Nitrite Reductase $NO_2^- + 6 Fd_{red} + 6H^+ - - > NH_4^+ + 2H_2O$

NH4+ is assimilated into organic N before it can be exported. NH4+ is incorporated into I. Amides (ASP-NH2) or II. Ureides These are transported elsewhere

Amides or Ureides --> AMINO ACIDS ---> PROTEINS Amides or Ureides ---> amino acids -->NUCLEIC ACIDS --> DNA, RNA

N₂ fixation -

Two types of biological N fixation

- 1. Free-living bacteria
- 2. Symbiotic N fixers. E.g. legume-Rhizobium
- Symbiotic N fixation in legume starts when N is limiting in the soil a. Recognition and binding of bacteria to root
- b. Nodulation
- c. Bacteroids develop ability to fix N22
- Development is dependent on regulated expression of bacterial and plant genes

Atmospheric N is fixed by one enzyme: Nitrogenase N₂ + 8e- + 8H⁺ + 16ATP --> 2NH₃ + H₂ + 16 ADP + 16 Pi Reducing power: Fd or NADH

 $\mathrm{NH_4^+}\,\mathrm{is}$ assimilated into organic N (amides or ureides) and then exported via the xylem.

Free-living N-fixing bacteria:

Cyanobacteria: are photosynthetic bacteria.

Symbiotic N fixers: Legume-Rhizobium Examples of legumes Phaseolus vulgaris. Green beans

From: TAMU

Soybean

Glycine max flowers from TAMU

Table 12-3 Taiz. Symbiotic N Fixers. Specific association between host plant and Rhizobium		
Host Plant	<u>Rhizobium</u>	
soybean	Bradyrhizobium japonica	
Alfalfa (Medicago sativa)	R. meliloti	
Pea (Pisum sativum)	R. leguminosarum bv viciae	
Clover (Trifolium)	R. leguminosarum bv trifolii	
Development depends on regulated expression of plant and bacterial genes		
Plant Genes expressed	<u>Bacteria Genes</u>	
Nodulins	Nif, Nod, Fix	

Where do reducing power & ATP come from?

- 1. Electrons Fd NADH
- 2. ATP

Plants synthesize new proteins in response to nodulation. Such proteins are nodulins.

Plant gene products of N fixation that are only turned on after nodulation.

LegHb is a plant nodulin.

Enzymes to synthesize amino acids. Asparagine synthase

