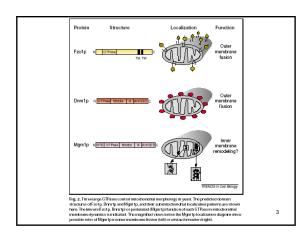
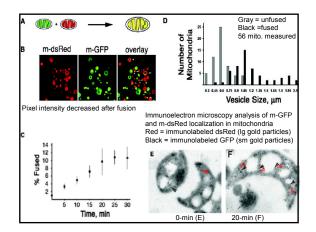
Mitochondrial fusion intermediates revealed in vitro.

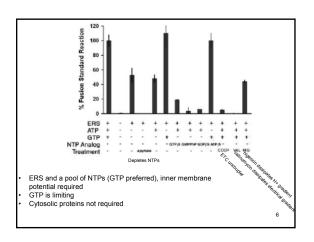

Meeusen S, McCaffery JM, Nunnari J. Science. 2004 Sep 17;305(5691):1747-52.

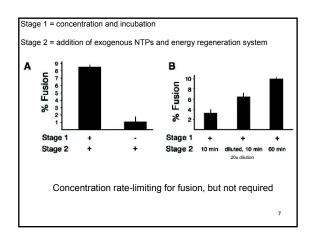
Presented by Adrienne Kish March 3, 2005

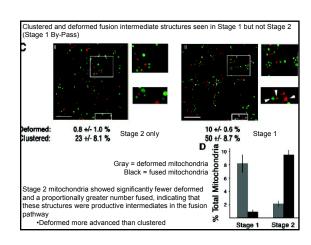
Background

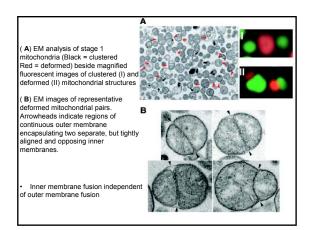
- Previously Known:
 - Mitochondrial fission and fusion events balanced in eukaryotes
 - Inner and outer membranes functionally and structurally distinct
 - 3 required proteins interact in vivo:
 - Ugol (outer membrane fusion)
 - Mgml (GTPase tethered to the inner membrane and localized to the intermembrane space for fission)
 - FzoI (integral membrane protein for fusion)
 - · (Dmnl another GTPase for fission)
 - Same protein machinery for inner and outer membrane fusion suggested

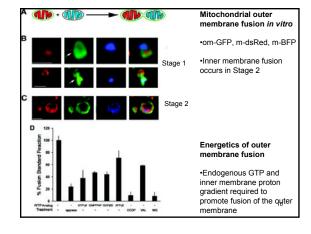

2




Background


- · Unknown:
 - Mechanism of membrane fusion (role of proteins and their interactions)
- · Question:
 - What are the discrete steps in mitochondrial membrane fusion in fission yeast and what is the role of the 3 main proteins in those steps?


4



EM analysis and fluorescence-based assays for mitochondrial outer and inner membrane fusion

 Fzo1 highly conserved transmembrane GTPase, candidate for mediating outer membrane fusion

Type of mitochondria	Temp. (°C)	Outer membrane fusion		Inner membrane fusion
		Fluorescence (%)	EM (%)	Fluorescence (%)
$WT \times WT$	22°	100 (9.2%, n > 600)	100 (6.3%, n > 300)	100 (12%, n > 300)
$WT \times WT$	37°	100 (8.8%, n > 400)	100 (6.4%, n > 300)	100 (11.8%, n > 400)
fzo1-1 × fzo1-1	22°	13 (n > 600)	64 (n > 800)	88 (n > 300)
fzo1-1 × fzo1-1	37°	14.5 (n > 400)	41 (n > 600)	5.5 (n > 200)
fzo1-1 × WT	22°	16 (n > 600)	60 (n > 300)	92 (n > 200)
fzo1-1 × WT	37°	16 (n > 400)	52 (n > 300)	(n > 300)

Fzo1-Fzo1 interactions on opposing mitochondrial membranes required to promote buter and inner membrane fusion

Effects partially suppressed by relatively high NTP concentration present during stage 2 and totally suppressed by wild-type Fzo1

Summary

- Outer and inner membrane fusion events separable and mechanistically distinct
 - Outer membrane fusion required mitochondrial concentration, was driven energetically by a relatively low (endogenous) concentration of GTP and was dependent on the inner membrane proton gradient
 - Inner membrane fusion required the hydrolysis of a relatively <u>high</u> concentration of GTP and the inner membrane <u>electrical gradient</u>
- Model:
 - Outer membrane fusion requires GTP and trans Fzo1 interactions on opposing mitochondria, suggesting that GTP promotes outer membrane fusion by means of Fzo1
 - Ugo1 functions as an adaptor between Fzo1 and Mgm1
 - Fzo1 interactions with inner membrane components may be required in a mechanical manner for the formation of regions of close inner and outer membrane contact within mitochondria or regulatory
- Significance: Dissection of mitochondrial fusion into separate outer and inner membrane fusion events provides an experimental framework for determining the exact functions of the fusion proteins.

 12