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Silencing of Developmental Genes in Hydra

Jan U. Lohmann, Ingrid Endl, and Thomas C. G. Bosch
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Numerous developmental control genes have been isolated in a variety of organisms by either homology cloning or
system-specific strategies. Functional genetic tests, however, are available for only a few model organisms and particularly
are missing in a number of animals that occupy key positions for understanding the evolution of development and gene
function. Double-stranded RNA-mediated interference (RNAi) opens a way to perform functional studies in such
“nongenetic” organisms. Here we show that RNAi can be used to test the function of developmental genes in the cnidarian
Hydra, a classical model for developmental studies. Introduction of double-stranded RNA corresponding to the head-
pecific gene ks1 caused strong depletion of ks1 transcripts. ks1 loss-of-function polyps exhibited severe defects in head

formation, indicating an important role of ks1 in Hydra head development. Our results demonstrate for the first time
efficient gene silencing in Hydra. RNAi provides an entry point for a variety of functional studies and a direct approach for
analyzing the hierarchy of regulatory genes in Hydra, which until now has not been amenable to loss-of-function
genetics. © 1999 Academic Press
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INTRODUCTION

Understanding evolutionary diversity depends on the
ability to functionally compare the genetic basis of devel-
opment in different organisms. The freshwater polyp Hydra
s one of the most basal metazoan animals in which
evelopment is being studied intensively (Bosch, 1998).
umerous developmental genes have been isolated from
ydra by homology cloning. Among them are homeobox

enes (Schummer et al., 1992; Shenk et al., 1993; Grens et
l., 1996; Gauchat et al., 1998), bHLH genes (Grens et al.,

1995), winged helix genes (Martinez et al., 1997), T-box
genes (Technau and Bode, 1999), Paired-class genes (Gal-
liot, 1995; Sun et al., 1997; Galliot et al., 1999), genes
encoding protein-tyrosine kinases (Bosch et al., 1989; Steele
et al., 1996; Stover and Steele, 1998), and Ras-related genes
(Bosch et al., 1995). Although these genes are highly con-
served on the sequence level, it is not known whether they
also function similar to their homologues in more complex
metazoa or whether they have been used for different
functions throughout evolution. In addition, several genes
have been isolated from Hydra and exhibit a precisely
controlled expression pattern during development, but are
not related to genes in higher metazoa. One example is the
head-specific gene ks1, which is sensitive to patterning

signals along the apical–basal body axis and regulated by a
complex interaction of inhibitory factors (Weinziger et al., P
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1994; Endl et al., 1999). Due to the lack of functional
genetic tests, direct evidence for the role of a developmental
gene in Hydra has not been obtained so far.

Recently, introduction of double-stranded RNA (dsRNA)
into embryos was found to selectively disrupt the activity
of the corresponding gene in a number of organisms (re-
viewed in Sharp, 1999). The effects of interference are
observed in the injected embryos and their progeny (Fire et
al., 1998; Kennerdell and Carthew, 1998). Only a few
dsRNA molecules are required in each affected cell, and
suppression of gene expression can be seen in cells both
immediately adjacent to the site of injection and at very
distant sites (Sharp, 1999). To determine whether RNAi can
be used for functional analysis of developmental genes in
Hydra, we electroporated dsRNA corresponding to the
head-specific gene ks1 into polyps. Our results demonstrate
that RNAi causes efficient ks1 depletion in intact polyps.
ks1 loss-of-function polyps have defects specifically during
head regeneration, but not foot regeneration, indicating that
this gene is functionally involved in head development.

MATERIALS AND METHODS

Animals. Hydra magnipapillata polyps were cultured accord-
ng to standard procedures at 18°C.
RNAi. For RNA synthesis, a DNA template was generated by
CR using the T3 and T7 primers and a vector containing the
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whole ks1 coding region. After gel purification, sense RNA and
ntisense RNA were produced from the PCR template. The PCR
roduct (250 ng) was incubated with 2 ml 103 NTP mixture (10
M ATP, 10 mM CTP, 10 mM GTP, 10 mM UTP, pH 7.5), 2 ml

03 transcription buffer (0.4 mM Tris–HCl, pH 8.0, 60 mM MgCl2,
00 mM DTT, 20 mM spermidine), 1 ml RNase inhibitor (20

units/ml), and 2 ml RNA polymerase (T3 or T7 RNA polymerase, 20
nits/ml) in a total volume of 20 ml for 2 h at 37°C. All reagents
ere from Boehringer Mannheim. The DNA template was re-
oved with a 15-min incubation with 2 ml RNase-free DNase I (10

U/ml). After the reaction was stopped with 2 ml of 0.2 M EDTA (pH
8.0), the RNA was precipitated overnight by adding 2.5 ml of 4 M
LiCl and 75 ml of 100% ethanol. The RNA was collected by
centrifugation for 30 min at 13,000 rpm, and the pellet was washed
twice with cold 70% ethanol. After resuspension in 5 ml DEPC–

2O, sense and antisense fractions were combined and heated to
5°C for 15 min to eliminate secondary structures. The comple-
entary strands were annealed in 750 mM NaCl, 75 mM sodium

itrate by cooling the sample slowly to room temperature. Approxi-
ately 20 mg of dsRNA was obtained using this protocol. Efficient

annealing was examined by agarose gel electrophoresis.
Transfection of polyps by electroporation. We previously have

demonstrated that reporter gene constructs can be introduced into
polyps by electroporation (Brennecke et al., 1998). For transfection of
dsRNA in whole polyps, electroporation was carried out as described
(Brennecke et al., 1998) with the following modifications. Sixty polyps
were placed in chilled electroporation cuvettes with a 0.4-cm gap and
washed twice with 800 ml DEPC–H2O. Electroporation was carried
out in 200 ml DEPC–H2O containing 10 mg dsRNA. To minimize the
possibility of degradation, dsRNA was added to the polyps just before
electroporation. Whole polyps were pulsed with a Bio-Rad Gene
Pulser (Bio-Rad) adjusted to an electric field strength of 0.95 kV/cm
and 25-mF capacitance. One pulse lasted for about 7 to 9 ms. Previous
experiments using fluorescently labeled dextran as well as reporter
gene constructs have indicated efficient uptake of macromolecules
into hydra cells using this procedure (Brennecke et al., 1998). Since
electroporation causes cell loss and tissue damage, the polyps were
transferred into 10 ml of hydra medium that was supplemented with
20% hyperosmotic dissociation medium (pH 6.9) containing 6 mM
CaCl2, 1.2 mM MgSO4, 3.6 mM KCl, 12.5 mM N-tris-
hydroxymethyl]methyl-2aminoethanesulfonic acid, 6 mM sodium
yruvate, 6 mM sodium citrate, 6.0 mM glucose, and 50 mg/ml
ifampicin. To facilitate recovery, polyps were kept at 10°C for up to

days. Twenty-four hours after electroporation the medium was
xchanged for standard hydra medium. Four to 6 days after electropo-
ation polyps were fully recovered and used for experimentation.

Molecular techniques. Nucleic acid isolation and Northern
lot analysis were carried out following standard procedures. As
s1-specific probe for RNA blot analysis we used the cDNA probe
escribed previously (Weinziger et al., 1994). Densitometric anal-
sis of autoradiograms was carried by phosphoimager analysis.
hole-mount in situ hybridization was performed as described in

ndl et al. (1999). Peroxidase staining in foot regenerating polyps
as carried out as described (Hoffmeister and Schaller, 1985).

RESULTS AND DISCUSSION

Electroporation of ks1 dsRNA Causes Depletion
of ks1 Transcripts in Intact Polyps
To determine whether dsRNA can suppress expression of
endogeneous genes in Hydra, dsRNA corresponding to the

n
(
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head-specific gene ks1 was introduced into whole polyps by
electroporation. Effects of RNAi on the level of ks1 tran-
scripts were examined by Northern blot analysis using
RNA from 40 animals per sample. Figure 1 shows a drastic
reduction of ks1 mRNA levels 6 days after electroporation.
Densitometric analysis indicated depletion of about 90% of
the ks1 mRNA pool (data not shown). Similar results were
obtained in three independent experiments. Expression of
structurally unrelated genes such as Cnox-2 was not sup-
pressed by ks1 (RNAi), indicating gene-specific silencing
(Fig. 1).

The strong reduction of ks1 levels observed by Northern
blot analysis was confirmed independently in a separate set
of RNAi experiments by in situ hybridization. As shown in
Figs. 2A and 2B, mock electroporated control animals
expressed ks1 in the head and the base of the tentacles,
which is the typical expression pattern (Endl et al., 1999). In
olyps electroporated with ks1 dsRNA, however, ks1 ex-
ression was strongly reduced 6 days after electroporation
Figs. 2C and 2D).

The efficiency of RNAi-mediated ks1 silencing in Hydra,
s shown in Figs. 1 and 2, is striking. Essentially all
s1-expressing cells appear to be affected, although the
sRNA was introduced by electroporation into presumably
nly a fraction of the cells. This indicates that the dsRNA
ust have spread throughout the tissue of the head region

nd probably the entire animal. A similar “spreading phe-

FIG. 1. Effects of ks1 dsRNA on levels of endogenous mRNAs in
intact polyps as analyzed by Northern blotting 6 days after electro-
poration. While ks1 transcripts are depleted by ks1 (RNAi), Cnox2
transcripts are not affected, indicating gene-specific silencing.
Similar results were obtained in three independent experiments.
Equal loading is demonstrated by the 28S RNA.
omenon” has been observed in plants and nematodes
Sharp, 1999), where RNAi suppression was found in cells

s of reproduction in any form reserved.
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both adjacent to the site of injection and at very distant
sites.

ks1-Deficient Polyps Have Defects during
Head Formation

Ks1 is a target gene for head-specific signals and is
expressed in ectodermal epithelial cells undergoing
tentacle-specific differentiation (Weinziger et al., 1994;
Endl et al., 1999). To test whether depletion of this gene by
RNAi also causes loss-of-function phenotypes, we submit-
ted an independent set of ks1 depleted polyps to head and
foot regeneration experiments. To examine the influence of
ks1 RNAi on head regeneration, polyps were decapitated
directly below the tentacles 6 days after electroporation and
allowed to regenerate for 36 h as shown schematically in
Fig. 3A. ks1-deficient polyps had a strongly reduced capac-
ity for head regeneration. The phenotypes varied signifi-
cantly between individuals, possibly due to variability in
the electroporated dose. As shown in Fig. 3B, only 15% (n 5
117) of ks1 depleted polyps had a fully developed head
compared to 57% (n 5 81) in control polyps. Moreover, 8%
(n 5 117) of the ks1 depleted polyps had failed to form any

FIG. 2. Loss of ks1 mRNA in RNAi-treated polyps as revealed by
whole-mount in situ hybridization. (A and B) Controls (mock
electroporated) showing ks1 transcripts in head and tentacle cells;
C and D) equivalent polyps 6 days after electroporation of dsRNA
argeting ks1. Polyps are depleted of most of the ks1 transcripts.
head structures compared to 1% (n 5 81) in the control.
The percentage of polyps developing head structures in-

Copyright © 1999 by Academic Press. All right
reased linearly with time after decapitation. At 72 h after
nset of regeneration, both control and experimental polyps
ad fully developed heads. Thus, ks1 RNA interference
eems to delay head regeneration and tentacle formation
ather than to disrupt them permanently. To determine
hether the defect was head-specific, we examined the

nfluence of ks1 RNAi on foot regeneration. Feet were
emoved and allowed to regenerate for 39 h, a time after
hich foot formation was not yet fully completed. There-

fter, animals were fixed and stained for foot-specific per-
xidase activity. No difference was detectable in the appear-
nce of peroxidase-expressing cells in regenerating control
n 5 79) and ks1 depleted (n 5 88) polyps. Thus, introduc-
ion of dsRNA into hydra cells appears not to inhibit
evelopmental processes in general but rather causes gene-
pecific interference. RNAi using other developmental
enes besides ks1 also results in gene-specific depletion and
oss-of-function phenotypes (J.U.L. and T.C.G.B., personal
bservation). Although the precise role of ks1 remains to be

FIG. 3. ks1-deficient polyps have defects during head develop-
ment. (A) Experimental design. Six days following electroporation
and 36 h after onset of head regeneration, polyps were morphologi-
cally classified as stage 1 (no tentacles), stage 2 (tentacle buds), and
stage 3 (fully regenerated head). (B) Histogram showing the percent-
age of polyps of the various developmental stages. ks1 RNAi caused
a severe delay in the regeneration of head structures. (C) Different
morphological stages of head regeneration as observed 36 h after

decapitation. Stage 1, having no tentacles; stage 2, having tentacle
buds; stage 3, having a fully regenerated head.
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identified, the results shown here indicate that this gene is
functionally involved in head formation. We previously
have suggested (Weinziger et al., 1994) that ks1 encodes a
secreted protein that stays associated with the cell surface
of ectodermal epithelial cells due to a large number of
charged amino acids. We subsequently have proposed
(Bosch, 1998) that the ks1 gene product, by interaction with
other proteins, might be involved in the change of cell
shape during differentiation of gastric-specific into tentacle-
specific epithelial cells. The defects in tentacle formation
caused by ks1 depletion (Fig. 3) support this idea.

In sum, our results demonstrate that by the use of RNAi,
evelopmental genes can now be functionally analyzed in
ydra. Until now one has made use of the variety of tissue
anipulations that alter expression patterns to deduce the

ole of a gene in hydra. Now RNAi provides a direct, and
hus, more precise assay. This will be useful for many
tudies including those involving issues of the evolutionary
onservation of gene function.
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