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Echolocating bats are auditory specialists, with
exquisite hearing that spans several octaves. In
the ultrasonic range, bat audiograms typically
show highest sensitivity in the spectral region of
their species-specific echolocation calls. Well-
developed hearing in the audible range has been
commonly attributed to a need to detect sounds
produced by prey. However, bat pups often emit
isolation calls with low-frequency components
that facilitate mother-young reunions. In this
study, we examine whether low-frequency hear-
ing in bats exhibits correlated evolution with (i)
body size; (ii) high-frequency hearing sensitivity
or (iii) pup isolation call frequency. Using pub-
lished audiograms, we found that low-frequency
hearing sensitivity is not dependent on body size
but is related to high-frequency hearing. After
controlling for high-frequency hearing, we
found that low-frequency hearing exhibits cor-
related evolution with isolation call frequency.
We infer that detection and discrimination of
isolation calls have favoured enhanced low-
frequency hearing because accurate parental
investment is critical: bats have low reproduc-
tive rates, non-volant altricial young and must
often identify their pups within large créeches.
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1. INTRODUCTION

Auditory systems are expected to be under selection
to increase detection of signals that affect survival or
reproduction. In the absence of physical or physio-
logical constraints, such selection may result in
correlated evolution between vocalizations and audi-
tory tuning (Endler 1992). Indeed, correlations
between audiograms and vocalization frequencies
within species have been reported (e.g. Brown &
Waser 1984). However, only one study on frogs has
attempted to incorporate evolutionary history, and in
this case correlated evolution between call frequency
and hearing sensitivity was not detected (Wilczynski
et al. 2001).

Echolocating bats provide an interesting system for
evolutionary analysis because they have two regions
of heightened hearing sensitivity. They exhibit
enhanced sensitivity to ultrasonic echolocation
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frequencies (Grinnell 1970) and to frequencies below
30 kHz (Moss & Schnitzler 1995). Low-frequency
hearing sensitivity may be attributed to a need for
eavesdropping on prey-generated noises (Neuweiler
1990). However, infant isolation calls have funda-
mental frequencies between 13 and 30 kHz (Gould
et al. 1973), and in one species, a correlation between
the spectral energy of isolation calls and hearing
sensitivity has been found (Bohn er al. 2004).
Isolation calls are frequency-modulated, multi-har-
monic vocalizations that are emitted by pups when
separated from their mothers (Gould et al. 1973).

Here, we test whether low-frequency hearing exhi-
bits correlated evolution with isolation call frequency.
We also consider two alternative explanations for
variation in low-frequency hearing: body size and
echolocation frequency. In many species, body size is
inversely related to both hearing (Koay ez al. 1997)
and call frequency (Ryan & Brenowitz 1985; Jones
1999) due to constraints on signal reception and
sound production. In addition, if low-frequency hearing
depends on high-frequency hearing (Koay et al. 1997),
then differences in low-frequency hearing may simply
be due to selection on the echolocation system.

2. MATERIAL AND METHODS

We used published data from species for which echolocation calls,
isolation calls and audiograms were available (see appendix in the
electronic supplementary material). We used median forearm length
to estimate body size. For some species, only spectrograms were
available for estimating echolocation or isolation call frequencies,
making it impossible to determine peak frequencies. Thus, for
consistency we used the median frequency of the fundamental
for isolation calls and the median frequency of the entire call for
echolocation calls. The fundamental frequency was used for
isolation calls because it often contains the most energy (e.g.
Habersetzer & Marimuthu 1986; Sterbing 2002). Isolation calls
typically increase in frequency during development and older pups’
calls may be intermixed with developing echolocation calls
(reviewed in Altringham & Fenton 2003). We minimized inclusion
of echolocation call precursors by only using calls from pups less
than two weeks of age. For measures of hearing sensitivity, we
did not use neural audiograms recorded from anaesthetized
bats because they show reduced sensitivity to low frequencies
(Neuweiler 1990). Most bat audiograms have two regions of
enhanced sensitivity separated by a relatively insensitive region
(figure la; appendix, electronic supplementary material). We used
the frequency of greatest sensitivity in these regions. If two adjacent
frequencies within a region showed the same hearing threshold, we
used the midpoint between those two values. Many bat species that
produce constant frequency echolocation calls show three frequency
regions of increased auditory sensitivity. For these species, we used
the lowest and highest frequency regions (figure 1b; appendix,
electronic supplementary material).

When testing evolutionary hypotheses, comparing traits across
taxa can be misleading because species may be similar as a result of
common descent, rather than independent evolution (Felsenstein
1985). Consequently, we used the comparative analysis by indepen-
dent contrasts program (CAIC v. 2.0.0; Purvis & Rambaut 1995)
to determine if evolutionary change in one variable correlates
with evolutionary change in a second variable. Relationships
between contrasts were tested using least-square regressions on log-
transformed values forced through the origin (Harvey & Pagel
1991). We tested for correlated evolution between (i) call and
hearing frequencies and body size; (ii) high-frequency hearing and
echolocation call frequency; (iii) low-frequency hearing and high-
frequency hearing; and (iv) low-frequency hearing and isolation call
frequency. We treated call frequencies as independent variables
under the supposition that the requirements of a task affect call
design (Simmons & Stein 1980), and that hearing sensitivity should
then be under selection to maximize call detection.

To determine if the results depended on the phylogenetic
hypothesis used, we estimated three sets of independent contrasts.
First, we calculated contrasts using a bat super-tree (Jones et al.
2002) with branch lengths (Jones et al. 2005). Second, we
incorporated the relationships between the four vespertilionid
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Figure 1. Behavioural audiograms for two species of bat show
the minimum sound pressure (SPL) in decibels that an animal
responds to across frequencies. (a) Eptesicus fuscus (Koay et al.
1997) and (b) Rhinolophus ferrumequinum (Long & Schnitzler
1975). Black arrows show low-frequency hearing sensitivity
and grey arrows show high-frequency hearing sensitivity. For
R. ferrumequinum, there are three peaks in hearing sensitivity
and low-frequency sensitivity was calculated as the midpoint
between two adjacent values with equal thresholds.

species in the study using Hoofer & Van den Bussche (2003), as
these relationships were unresolved in Jones ez al. (2002). However,
we could not estimate these branch lengths, so they were set equal.
For the third analysis, we used a recent molecular phylogeny
(Teeling et al. 2005) with branch lengths from Jones ez al. (2005).
We present the results from the phylogeny of Jones et al. (2002)
because branch length data permit a more realistic model of
evolutionary change (Felsenstein 1985). However, all three analyses
gave similar results, and we include the range of r-values for each
analysis.

3. RESULTS

Phylogenetic analyses resulted in 10 independent con-
trasts for each comparison (figure 2a). We did not find
evidence of correlated evolution between forearm
length and echolocation call frequency (F;0=1.31,
p=0.28, r=0.36, range 0.36-0.48), high-frequency
hearing (F;,0=0.005, »=0.94, r=0.02, range
0.02-0.09), isolation call frequency (F;0=0.18,
p=0.74, r=0.1, range 0.08-0.14), or low-frequency
hearing (F;,0=0.002, p»=0.96, r=0.04, range
0.04-0.10). In contrast, high-frequency hearing showed
evidence of correlated evolution with echolocation call
frequency (Fy,0,=27.41, p=0.0005, r=0.87, range
0.71-0.87; figure 2b) and low-frequency hearing
exhibited correlated evolution with high-frequency
hearing (F;,0=8.05, p»=0.02, r=0.69, range
0.64-0.69; figure 2¢). To control for high-frequency
hearing, we compared residuals from a high- versus
low-frequency hearing regression to contrasts in
isolation call frequency. We found a significant positive
relationship between change in isolation call frequency
and change in residual low-frequency hearing
(F1,0=24.75, p=0.0008, r=0.85, range 0.79-0.85;
figure 2d), and infer that low-frequency hearing
exhibits correlated evolution with pup call frequency.
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4. DISCUSSION

This study presents evidence of correlated evolution
between vocalizations and auditory sensitivity for
frequency regions that correspond to echolocation
and pup isolation calls. These results did not depend
on the topology or branch lengths of the phylogeny.
In apparent contrast to another study (Jones 1999),
we did not find evidence of correlated evolution
between body size and either vocalization or hearing
frequency. However, Jones (1999) examined corre-
lations on species data within families without any
phylogenetic correction. Examination of his data
reveals that vocalization and hearing frequencies are
not correlated between families. Thus, these appa-
rently disparate results can be reconciled if echoloca-
tion evolution has been decoupled from body size
evolution among families.

Given that echolocation functions in autocommu-
nication (Neuweiler 1990), one would expect aural
sensitivity to match echolocation call frequency.
However, finding evidence of correlated evolution
between low-frequency hearing and isolation call
frequency, after removing correlated effects of echolo-
cation, is more surprising. An alternative function for
low-frequency hearing is that it facilitates prey detec-
tion. This explanation is plausible for two gleaning
species that use prey-generated sounds, Plecotus
aurttus (Anderson & Racey 1991) and Nyctophilus
gouldi (Grant 1991), as these bats respond to frequen-
cies below their pup isolation calls (see appendix in
the electronic supplementary material). However,
prey detection cannot explain low-frequency hearing
sensitivity in frugivorous species, such as Carollia
perspicillata and Artibeus jamaicensis, which supports
our interpretation of an auditory specialization for
parent—offspring communication.

Auditory tuning is unlikely to match isolation call
frequency as a consequence of signal production.
Only infants emit isolation calls and hearing sensi-
tivity changes during the course of development.
Thus, adult hearing does not match that of young
bats (Rubsamen ez al. 1989). In some species, pups
begin vocalizing before they can hear (Brown ez al.
1978) and isolation calls are heritable (Scherrer &
Wilkinson 1993). Thus, auditory feedback may not
be as crucial to the production of isolation calls in
bats as in other vocal communication systems.

Female bats give birth to non-volant altricial young
that are left in roosts while their mothers forage. As a
result, females must frequently locate, and for group-
living species, recognize their offspring among others.
Because most bats have low reproductive rates, infant
survival should have a large impact on adult fitness.
Correlated evolution between hearing and isolation
calls may, therefore, reflect selection for detection of
young. Although here we have focused on echolocat-
ing bats, the young of many other mammalian species
emit vocalizations (Symmes & Biben 1985; Branchi
et al. 2001), and adult hearing sensitivity can be
similar to the frequency of infant vocalizations (Ehret
1989; Aitkin et al. 1994). Thus, detection of young
may have been a significant selective factor in the
evolution of auditory function in a variety of
mammals.
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Figure 2. (a) Phylogenetic relationships of species used in the analysis based on Jones ez al. (2002). Independent contrasts
were calculated for nodes designated by black squares. Branch lengths are not drawn to scale. Relationships between (b)
high-frequency hearing and echolocation call contrasts, (¢) low-frequency hearing and high-frequency hearing contrasts and

(d) residual low-frequency hearing and isolation call contrasts.
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