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    Abstract     To be evolutionarily stable, cooperative behavior must increase the actor’s 
lifetime direct fi tness (mutualism) or indirect fi tness (altruism), even in the presence 
of exploitative, noncooperative “cheaters.” Cooperators can control the spread of 
cheaters by targeting aid to certain categories of individual, such as genetic relatives 
or long-term social partners. Without such discrimination, cheaters could gain the 
reproductive benefi ts of cooperation without paying the same costs and eventually 
outbreed cooperative phenotypes. Here, we review evidence for cooperative behav-
iors in bats and the possible mechanisms that might prevent cheating. Cooperative 
behavior in bats is shaped by ecology, life history, and social structure. Altruism 
without kin discrimination is unlikely to evolve through population viscosity in bats 
because dispersal leads to low-average relatedness in the colony or social group. On 
the other hand, mutually benefi cial cooperation, often between unrelated individu-
als, is found in several bat species. Examples include social thermoregulation, male 
cooperation for defense of female groups, female cooperation for defense of food 
and pups, social grooming, and food sharing. Many forms of cooperation in bats 
likely involve both direct and indirect fi tness benefi ts. Some group-living tropical 
bat species provide intriguing examples of costly helping behavior between unre-
lated individuals, but the exact mechanisms that prevent cheating remain to be 
tested.  
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12.1         Introduction 

 Natural selection favors various forms of cooperation at every level of life from genes 
to cells to individuals to social groups. Cooperative behaviors increase the fi tness of 
recipients and are adaptive because they promote the actor’s own direct fi tness, 
increase indirect fi tness by helping a genetic relative (kin selection), or some combi-
nation of both (Table  12.1 ). All forms of social life from microbial biofi lms to insect 
and human societies involve mechanisms that maintain cooperation and suppress con-
fl ict. Without these mechanisms, helping behaviors or public goods would be exploited 
by noncooperative “cheaters” that can gain the reproductive benefi ts without paying 
the costs. Here, we describe evidence for cooperative behaviors in bats and discuss 
what behaviors might prevent cheating. Before discussing specifi c examples, we 
briefl y review the underlying social evolution theory. Further review of social evolu-
tion is provided by West et al. ( 2007a ), Wenseleers et al. ( 2010 ), and Bourke ( 2011 ).

12.2        Inclusive Fitness Theory 

 Hamilton ( 1964 ) solved the long-standing puzzle of why natural selection some-
times rewards organisms that sacrifi ce their own lifetime reproductive success to 
help others. Within evolutionary constraints, organisms should evolve to maximize 
a quantity he called inclusive fi tness, which includes the transmission of genes via 
both personal reproduction (direct fi tness) and by helping genetic relatives repro-
duce (indirect fi tness). Hamilton’s concept of inclusive fi tness updated the original 
concept of fi tness based on offspring production: adaptations evolve because they 
increase inclusive fi tness, not just offspring production. Thinking of individual 
organisms as “inclusive fi tness maximizers” has provided among the most testable 
and successful hypotheses in social behavior (Davies et al.  2012 ). Hamilton showed 
that altruism evolves when the reproductive benefi ts to others ( B ), scaled by the 
coeffi cient of relatedness ( r ), exceed the reproductive costs to the helper ( C ), i.e., 
 rB  >  C , an inequality now known as Hamilton’s rule.    

 To distinguish inclusive fi tness theory from early, fl awed theories of group selec-
tion, paths to cooperation via indirect fi tness benefi ts were confusingly termed “kin 
selection” by Maynard-Smith ( 1964 ), despite kin selection not really being a form 

   Table 12.1    Categories of adaptive social behavior   

 Effect on actor’s direct 
fi tness 

 Effect on recipient’s direct fi tness 

 Increase  Decrease 

 Increase  Mutualism or mutual benefi t  Selfi shness or parasitism 
 Decrease  Altruism  Spite 

     Cooperation    Confl ict  
  Adapted from Hamilton ( 1964 ) and West et al. ( 2007b ). Effects on direct fi tness are measured in 
average lifetime offspring production. Altruism and spite are maintained solely by indirect fi tness 
(kin selection)  
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of selection and not requiring shared familial ancestry as would be observed in a 
pedigree (e.g., “greenbeards,” Hamilton  1964 ; West and Gardner  2010 ). Kin 
 selection does not even require kin recognition, because it can occur passively via 
limited dispersal. Yet, the term “kin selection” still leads to the common semantic 
misunderstanding that kin selection and modern forms of group selection (i.e., mul-
tilevel selection) are alternative competing hypotheses, rather than alternative ways 
of modeling the same biological process (e.g., Wade et al.  2010 ). Inclusive fi tness 
models can implicitly account for the effects of competition between groups even 
when those groups are not explicit in the model, just as multilevel selection models 
can implicitly capture the effects of relatedness even when relatedness is not explicit 
in the model. In this way, the two approaches are mathematically equivalent 
(Wenseleers et al.  2010 ; Bourke  2011 ), as both models can involve the same nonran-
dom association of cooperative genotypes. 

 Although originally developed to explain altruism in insect societies, social evo-
lution theory is now routinely applied to fi elds as diverse as microbiology, medicine, 
agriculture, and the social sciences (e.g., Denison et al.  2003 ; Foster  2005 ; Kümmerli 
et al.  2009 ). The diversity of applications refl ects the central role of cooperation at 
every level of life, wherever reproducing entities cooperate in groups: genes within 
genomes, genomes within cells, cells within organisms, organisms within groups, 
and members of different species in interspecifi c mutualisms. At all these levels, 
cooperation is potentially vulnerable to exploitative “cheating” that occurs when 
individuals benefi t from defecting from cooperation. Examples of cheating include 
genes that transmit themselves at the expense of the rest of the genome, cancer cells 
that replicate at the expense of the individual, social group members that receive aid 
but do not help others, eusocial insect workers that lay their own eggs rather than 
only tending the eggs of the queen, or fl owers attracting pollinators without provid-
ing a nectar reward. Social evolution can often be seen as a coevolutionary arms 
race between cooperative and cheating strategies. 

 Inclusive fi tness theory explains why cooperation evolves, but does not specify the 
mechanisms that maintained or enforce it. The benefi ts of receiving help ( B ) and costs 
of giving help ( C ) in Hamilton’s rule are determined by the social and ecological cir-
cumstances individuals typically encounter in their natural environment and are often 
frequency dependent since they may be infl uenced by the conditional behavior of 
social partners. Moreover, the relative importance of direct and indirect benefi ts and 
the particular mechanisms that prevent cheating are still open questions across a wide 
range of organisms, including bats. To estimate the fi tness costs and benefi ts of social 
behaviors in bats, it is crucial to know about both kinship and social structure.  

12.3     Kinship and Social Structure in Bats 

 The social and mating systems of the roughly 1,260 species of Chiroptera have 
greatly diversifi ed over the last 50 million years. Bats are primarily tropical (~75 % 
of species) and follow the general mammalian social pattern: females aggregate 
around important resources—including food, roosts, or conspecifi cs—whereas 
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males compete for access to females (Clutton-Brock  1989 ). Although most tropical 
bats are polygynous, overall bats display a diverse spectrum of mating systems, 
ranging from social monogamy to promiscuity. McCracken and Wilkinson ( 2000 ) 
categorized 66 species (~5 %) into mating systems based on seasonality, sex com-
position of groups, and whether mating occurs within or outside roosts. More recent 
reviews of social and mating systems include Wilkinson ( 2003 ), Zubaid et al. 
( 2006 ), and Kerth ( 2008a ). 

 Limited dispersal, including natal philopatry, can result in high relatedness 
among social group members and thus has important implications for social evolu-
tion. Kin selection via limited dispersal occurs when individuals cooperate indis-
criminately with neighboring individuals that are genetically related on average 
(Hamilton  1964 ). However, evidence suggests that conditions of high-average relat-
edness within groups or colonies are rare or absent in most bats. 

 Natal philopatry can lead to competition among kin that reduces or completely 
negates the indirect fi tness benefi ts of helping relatives (Hamilton and May  1977 ; 
West et al.  2002 ). In other words, the easiest way to benefi t kin might be to disperse 
and avoid competing with them (Hamilton and May  1977 ; Kümmerli et al.  2009 ). 
Kin competition can be reduced in theory if subsets of relatives leave the natal col-
ony as a group (i.e., budding dispersal, Gardner and West  2006 ; Kümmerli et al. 
 2009 ), and interestingly, this pattern has been found in at least one bat species 
( Eptesicus fuscus , Metheny et al.  2008a ; Kerth  2008b ). 

 Natal philopatry of both sexes can lead to inbreeding. In bats, the typical pattern is 
female philopatry and male dispersal resulting in social groups with matrilineal kin, 
where immigration and visitation by foreign males reduce average group relatedness 
and inbreeding (e.g., Wilkinson  1985 ; Kerth and Morf 2004). In species where domi-
nant males typically remain resident longer than the age of female sexual maturity, 
females tend to disperse to avoid mating with their fathers ( Lophostoma silvicolum , 
Dechmann et al. 2007;  Saccopteryx bilineata , Nagy et al. 2007;  Rhynchonycteris 
naso , Nagy et al.  2013 ; other mammals, Lukas and Clutton-Brock  2011 ). The same 
conditions probably explain the complete female dispersal found in  Phyllostomus 
hastatus  (McCracken and Bradbury  1981 ) and female movements between different 
social groups in  Artibeus jamaicensis  (Morrison and Handley  1991 ). 

 Average colony relatedness in bats remains low even when pairwise relatedness 
values between certain individuals are high. For example,  Myotis bechsteinii  live in 
closed female groups with 75 % of females roosting with close relatives ( r  = 0.25 or 
greater), yet mean colony relatedness is still quite low ( r  = 0.02, Kerth et al.  2002 ). 
Similar patterns are found in other species (e.g., Wilkinson  1985 ; Burland et al. 
2001; Metheny et al.  2008b ; Boston et al. 2012; Patriquin et al.  2013 ). Even unusu-
ally high levels of pairwise relatedness do not translate to high-average colony relat-
edness. For example, in  Rhinolophus ferrumequinum , some females mate with the 
same male across years and other females mate preferentially with the same male as 
their mother. As a consequence, pairwise relatedness between resulting progeny is 
elevated two to fi ve times above normal (Rossiter et al.  2005 ). Yet, mean colony 
relatedness remains low ( r  = 0.03, Rossiter et al.  2006 ). 

 In social species where pairwise relatedness is on average low within groups but 
highly variable among pairs, as is the case in most bats, individuals are expected to 
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actively discriminate kin rather than rely on indiscriminate altruism and limited dispersal 
(Cornwallis et al.  2009 ). Kin discrimination based on phenotypic  matching of olfac-
tory or vocal cues would benefi t individuals whenever kin and non-kin  intermingle. 
For example, in the group-living  Desmodus rotundus  where  individuals are surrounded 
by non-kin (average,  r  = 0.02–0.11), females groom and regurgitate food with close 
relatives more than expected by chance (Wilkinson  1984 ,  1986 ). Similarly, average 
relatedness with roostmates is low in  Myotis septentrionalis , but related pairs were 
more likely to associate and switch roosts together than unrelated pairs (Patriquin et al. 
2013). Unlike cooperatively breeding birds and mammals, bats rarely, if ever, live in 
extended family groups; therefore, helping behaviors in bats that are directed indis-
criminately within groups are likely mutually benefi cial rather than altruistic. 

 Patterns of mating, dispersal, and survival determine kinship structure, but except 
for maternal care, kinship is not always a strong determinant of cooperation in bats. 
Non-kin cooperation is found in several species (e.g.,  D. rotundus , Wilkinson  1984 ; 
 M. bechsteinii , Kerth et al.  2011 ;  P. hastatus , Wilkinson and Boughman  1998 ; Bohn 
et al.  2009 ), and, on the other hand, highly related female  R. ferrumequinum  do not 
demonstrate obvious strong cooperative behaviors (Rossiter et al.  2002 ,  2006 ). 
Ecological factors, which determine costs and benefi ts of cooperation, are likely to 
shape the occurrence of cooperative behaviors in bats.  

12.4     Cooperation and Confl ict as a Coevolutionary 
Arms Race 

 For some cases of cooperation, there appears to be no cost to cooperating and hence 
no potential for cheating (by-product mutualisms). Consider, for instance, bats mak-
ing drinking passes at watering holes from a single direction to avoid collisions 
(Adams and Simmons  2002 ). However, once a by-product benefi t is established, 
investments in a mutualism may evolve that yield higher returns (Connor  1986 ). For 
example, in species where young cluster together in crèches (Fig.  12.1a ), females 

  Fig. 12.1    Examples of cooperative behavior in bats. ( a ) Pups like these  Rhinolophus darlingi  may 
mutually benefi t from clustering together for warmth. ( b ) A female  Phyllostomus hastatus  roosting 
with several non-offspring pups in Trinidad. ( c ) Regurgitated food sharing between unrelated adult 
 Desmodus rotundus        
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might benefi t from helping non-offspring pups survive if their own pups gain ther-
moregulatory benefi ts with larger crèche sizes (an example of a hypothesis called 
“group augmentation,” Kokko et al.  2001 ). Besides thermoregulation, bats may 
associate for the direct benefi ts of avoiding predators ( Pteropus poliocephalus , 
Klose et al.  2009 ) or learning about roosts and feeding sites (e.g., Wilkinson  1992b , 
 1995 ; Kerth and Reckardt  2003 ; Ratcliffe and Hofstede 2005; Safi  and Kerth  2007 ; 
Dechmann et al.  2009 ,  2010 ). The signifi cance of social information on the evolu-
tion of sociality is suggested by the fi nding that male sociality in temperate bats 
evolved more often in lineages that forage on ephemeral insects in open habitats—
conditions where eavesdropping is most likely (Safi  and Kerth  2007 ).

   Opportunities to cheat can be subtle. For instance, huddling for thermal benefi ts 
(e.g., Pretzlaff et al.  2010 ) is often regarded as a by-product mutualism that does not 
require enforcement; yet, cheating is possible if an individual can maintain a lower 
body temperature than its neighbors, saving energy while still being kept warm by 
others (“the huddler’s dilemma,” Haig  2008 ). Similarly, social information about 
food can lead to frequency-dependent selection between “producer” strategies that 
invest in fi nding food and “scrounger” strategies that instead follow others (Barnard 
and Sibly  1981 ). For example, aerial-hawking bats might eavesdrop on hunting con-
specifi cs and steal their prey (Chiu et al.  2010 ) or vampire bats might drink from 
wounds opened by other individuals (GGC and GSW, personal observations). 

 To prevent exploitative strategies from invading, cheating prevention is required. 
Kin discrimination can prevent cheating by ensuring that helpers aid primarily 
genetic relatives. Individuals can enforce non-kin cooperation through various 
forms of conditional reward or punishment. Such enforcement might involve indi-
viduals actively punishing cheaters, decreasing cooperative investments, or switch-
ing away from social partners that cheat (Trivers  1971 ; Noë and Hammerstein  1994 ; 
West et al.  2007a ; Fruteau et al.  2011 ) and are described by many terms in the litera-
ture including reciprocal altruism, reciprocity, sanctions, rewards, partner control, 
or partner choice (West et al.  2007b ; Bshary and Bronstein  2011 ). 

 Such mechanisms of enforcement are necessary to explain the persistence of coop-
erative behaviors that pose energetic costs with potential negative fi tness consequences 
(Table  12.2 ). Below, we describe evidence for such helping behaviors in bats. We 
illustrate how altruistic parental care is exploited by foreign pups, how conditions of 
intense competition between unrelated males can select for alliances between related 
males, how competition between groups for food might select for cooperative forag-
ing within groups, how infanticide can lead to pup guarding, and how the need to 
enforce cooperation might lead to partner fi delity and long-term social bonds.

12.5        Cooperative Behaviors in Bats 

12.5.1     Alloparental Care 

 There are many anecdotal observations of bats nursing non-offspring pups in the 
wild ( Tadarida brasiliensis ,  Nycticeius humeralis ,  Pipistrellus pipistrellus , 
 Miniopterus schreibersi ,  P. hastatus ) or in captivity ( Eidolon helvum ,  Rousettus 
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aegyptiacus ,  Macrotus californicus ,  P. pipistrellus ,  T. brasiliensis ,  D. rotundus , 
 Diaemus youngi ), as well as some observations of conspecifi cs helping with birth 
( Pteropus rodricensis ) or adopting pups in captivity ( D. rotundus ,  Diphylla ecau-
data ,  Cynopterus brachyotis , Kunz et al.  1994 , LeBlanc  2001 , and refs therein, 
Delpietro and Russo  2002 ). However, in most cases, it is unknown if such helping 
behaviors are evolved adaptations or simply by-products of maternal care. 

 Prior to inclusive fi tness theory, such behaviors were thought to occur for the 
good of the colony or species. For example, nursing female  T. brasiliensis  were 
thought to “act as one large dairy herd delivering milk passively…to keep the milk 
supply distributed among the caves in proportion to demands for it” (Davis et al. 
 1962 ). Wild female  T. brasiliensis  nurse pups that are not their own offspring in at 
least 17 % of observed cases (McCracken  1984 ), but this behavior is best under-
stood as successful milk parasitism by unrelated pups. Given the chance,  T. brasil-
iensis  pups will attempt to nurse from non-mothers that respond by hitting, 
scratching, and biting them (McCracken and Gustin  1991 ). 

 Milk parasitism likely occurs in other species as well.  S. bilineata  pups respond 
to non-maternal female calls (Knörnschild and von Helversen  2008 ), and  N. hume-
ralis  pups attempt to nurse from non-maternal females with increasing frequency 
starting at 8 days of age (Wilkinson  1992a ). During two summers of observation of 
 N. humeralis , females almost always allowed nursing by offspring, but rejected at 
least 23 % of attempts by non-offspring pups by covering their nipple, moving 
away, or biting at persistent pups (Wilkinson  1992a ). 

   Table 12.2    Cooperative behaviors in bats that pose costs to the helper   

 Behavior  Key references  What might prevent cheating? 

 Alloparental 
nursing 

 McCracken and Gustin 
( 1991 ), Wilkinson ( 1992a ) 

 1. Kin discrimination: help is targeted to 
genetic relatives 

 2. By-product mutualism: cheating is 
impossible if alloparental nursing 
leads to higher milk yield, increased 
milk fat, or reduced mastitis 

 3. Group augmentation: increases in 
colony size benefi t mother or offspring 
by increasing social information 

 Food sharing  Wilkinson ( 1984 ), Carter 
and Wilkinson ( 2013 ) 

 1. Kin discrimination 
 2. Reciprocity: bats share with reciproca-

tors and withhold sharing with 
non-reciprocating cheaters 

 Social grooming  Wilkinson ( 1986 ), Kerth et al. 
( 2003 ), Kerth ( 2008a ), 
Ancillotto et al. ( 2012 ), 
Carter and Wilkinson 
( 2013 ) 

 1. Kin discrimination 
 2. Reciprocity 
 3. Exchange: bats reciprocate social 

grooming for other services within a 
long-term social bond 

 Cooperative mate 
guarding 

 Ortega et al. ( 2008 ), 
Nagy et al. ( 2012 ) 

 1. Kin discrimination 
 2. Helpers more likely to inherit 

dominant status 
 Pup guarding  Bohn et al. ( 2009 )  1. Group augmentation 

 2. Exchange 

12 Cooperation and Confl ict in the Social Lives of Bats



232

 Yet,  N. humeralis  mothers also nursed offspring that were not their own in at 
least 20 % of nursing bouts, and two hypotheses can explain how alloparental nurs-
ing might be adaptive for nursing females. First, alloparental nursing might be 
explained as “milk dumping” to decrease weight and improve foraging ability. As 
in other mammals, incomplete suckling might decrease milk yield, decrease per-
centage of fat in milk, and increase rate of mastitis. Also, the peak of alloparental 
nursing coincided with the annual peak in prey density, when mothers would be 
predicted to have excess milk (Wilkinson  1992a ). This by-product mutualism 
hypothesis predicts that alloparental nursing would correlate with higher post- 
foraging mass gain. 

 A second group augmentation hypothesis is that alloparental nursing increases col-
ony size, and subsequently, social information available to mother and offspring 
(Wilkinson  1992a ,  b ).  N. humeralis  preferentially nursed non-offspring pups that were 
female and hence philopatric, even those mothers with male offspring. This hypothesis 
predicts that groups with more female pups should yield greater pup survival.  

12.5.2     Cooperative Male Defense of Females 

 In bats, there are no known cases of cooperative breeding, where subordinates help 
a dominant female breed. However, there is evidence of male bats forming coopera-
tive alliances to monopolize females, similar to the male alliances found in dolphins 
(Connor et al.  1992 ) and chimpanzees (Watts  1998 ). In polygynous species, domi-
nant males often tolerate the presence of other less dominant males, especially rela-
tives, and these subordinate males often appear to help ward off foreign males 
(Ortega et al.  2003 ). In  A. jamaicensis , dominant males lose paternity to both sub-
ordinates and visiting foreign males, but dominants are able to defend larger female 
groups with the help of subordinates, and also benefi t indirectly if subordinates that 
sire offspring are related. In return, subordinate males gain greater access to females, 
increased chances to acquire dominant status, and indirect benefi ts if they are related 
to dominants (Ortega et al.  2003 ,  2008 ). Such alliances between dominants and 
subordinates can last more than 2 years (Ortega et al.  2008 ). In  S. bilineata , domi-
nant males benefi t from subordinate males that queue for dominant status (Voigt and 
Streich  2003 ; Nagy et al.  2012 ). In this species, dominant male tenure duration is 
not correlated with number of females or forearm size (a proxy of body size), but 
tenure duration does increase with the number of subordinate males on their terri-
tory (Nagy et al.  2012 ).  

12.5.3     Cooperative Female Defense of Food and Pups 

 Whereas access to females is the key limit on male fi tness, access to food and roosts 
is the equivalent limitation on female fi tness. Not surprisingly then, there is also 
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evidence that females cooperatively monopolize and defend food resources from 
other females. Female greater spear-nosed bats,  P. hastatus , live and cooperate with 
unrelated groupmates. Since both sexes disperse from their natal group, the 10–22 
adults in a group are unrelated (McCracken and Bradbury  1981 ). On the island of 
Trinidad, between 4 and 40 groups coinhabit various caves, each group located in a 
ceiling alcove guarded by a resident male. Female groupmates give birth synchro-
nously (Porter and Wilkinson  2001 ) and cooperatively forage and defend food 
patches such as large fruiting trees (Wilkinson and Boughman  1998 ). Group mem-
bers coordinate their movements using socially acquired, group-specifi c “screech 
calls” that convey group membership but not individual identity (Boughman  1998 ; 
Boughman and Wilkinson  1998 ). These calls also appear to facilitate cooperative 
mobbing of predators (Knörnschild and Tschapka  2012 ). In contrast, pups produce 
individually distinct “isolation calls” (Bohn et al.  2007 ). 

 Isolation calls allow mothers to fi nd, recognize, and retrieve their pups that have 
fallen to the ground (Bohn et al.  2007 ,  2009 ). Falls are surprisingly common; Bohn 
et al. ( 2009 ) observed 85 pups (~4 % of all non-volant pups) fall to the cave fl oor 
during 50 h of observation. And these fallen pups will die quickly if not retrieved. 
In one cave, 17 females visited and inspected fallen pups as many as 342 times 
(Bohn et al.  2009 ). Mothers will retrieve their pups, but females from other groups 
will often bite pups, and sometimes carry away and kill them. Females from the 
same social group, on the other hand, while not retrieving the pup themselves, will 
often guard pups from attacking non-groupmate females (Bohn et al.  2009 ). Males 
ignore fallen pups. 

 Female  P. hastatus  appear to cooperate with unrelated groupmates and compete 
with non-groupmates. But given that all offspring disperse, what do adult females 
gain from the survival of pups in their social group? One possibility is group aug-
mentation (Kokko et al.  2001 ): that females guard pups to ensure that warm bodies 
surround their own pup when they are out of the cave foraging. This hypothesis 
predicts that pup guarding increases or helps maintain pup numbers in the group 
towards an optimum (Kokko et al.  2001 ) and is consistent with the unusual syn-
chrony of births within groups (Porter and Wilkinson  2001 ; Bohn et al.  2009 ). Yet, 
data on group size and pup fi tness show either no effect (Boughman  2006 ) or a 
negative linear correlation between group size and pup condition (Bohn et al.  2009 ). 
However, an optimal group size might produce a unimodal, rather than linear, rela-
tionship between group size and pup survival. Furthermore, long-term fi eld studies 
of cooperatively breeding birds and mammals show that the effects of cooperation 
on the fi tness of young can be subtle and slow acting; hence lifetime fi tness benefi ts 
cannot be discounted even when no short-term benefi ts are obvious (Hatchwell et al. 
 2004 ; Russell et al.  2007 ; Brouwer et al.  2012 ). More data are therefore needed to 
determine the relationship between lifetime reproductive success and group size in 
 P. hastatus  and other bats. 

 A second possibility is that females somehow enforce the direct fi tness benefi ts of 
pup guarding. Bohn et al. ( 2009 ) found no evidence for direct reciprocity, that moth-
ers guard pups to enforce guarding of their own pup. There was no correlation 
between guarding pups and having one’s own pup guarded, or between time guarding 
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and time having one’s own pup guarded (Bohn et al.  2009 ). It is possible that females 
“exchange” pup guarding for other cooperative services, such as some of the behav-
iors described above or the possibility of “babysitting” when adults stay behind with 
several pups (GSW personal observation, Fig.  12.1b ), but documentation of such 
exchanges, or exclusion of less cooperative individuals, remains to be obtained.  

12.5.4     Food Sharing 

 When adult female or young  D. rotundus  miss a nightly meal, female roostmates 
will typically regurgitate some of their own blood meal to feed them (Wilkinson 
 1984 ). Female donors regurgitated blood mostly for their own offspring (70 % of 
cases) but also for other hungry adult females (Fig.  12.1c ). Adult food sharing cor-
relates independently with both relatedness and roosting association (Wilkinson 
 1984 ). Reciprocal food sharing in  D. rotundus  is frequently cited as an example of 
reciprocity, but it also demonstrates kin discrimination because more than 95 % of 
food sharing occurred between close relatives ( r  < 0.25) despite the majority of pos-
sible donors being unrelated (Wilkinson  1984 ). On the other hand, simulations dem-
onstrate that, if reciprocity exists, the resulting direct fi tness benefi ts would greatly 
exceed the indirect fi tness benefi ts (Wilkinson  1988 ). Hence, it is possible that 
 D. rotundus  base their helping decisions on past social experience rather than cues 
to relatedness. Others have proposed that food sharing between non-kin only occurs 
due to kin recognition errors (Hammerstein  2003 ), harassment of potential donors 
(Clutton-Brock  2009 ), or group augmentation (Davies et al.  2012 ). 

 To test these alternative hypotheses, we induced food sharing in  D. rotundus  
under controlled captive conditions of varying relatedness and equal roosting asso-
ciation (Carter and Wilkinson  2013 ). We found that the majority of donations were 
initiated by donors and hence could not be explained by harassment. The dyadic 
patterns of food sharing were reciprocal, correlated with grooming, and stable over 
time. Reciprocal donations were eight times more important than pairwise related-
ness estimates for predicting food donations under conditions of equal association 
(Carter and Wilkinson  2013 ). 

 A multilevel selection model (Foster  2004 ) assumes that donors do not discrimi-
nate between unfed bats when giving blood and suggests that food sharing could in 
theory evolve without kin discrimination or reciprocity. However, this model ignores 
several important factors: the possibility of cheating, the frequent roost switching 
and fl uid fi ssion–fusion dynamics that make  D. rotundus  social groups unstable in 
membership (Wilkinson  1985 ), and the evidence that food is not shared indiscrimi-
nately among group members (Wilkinson  1984 ; Carter and Wilkinson  2013 ). 

 Reciprocity can exist in  D. rotundus  assuming they remember past social experi-
ences and invest accordingly, which is consistent with this species possessing the largest 
brain and neocortex relative to their body size among bats (Baron et al.  1996 ). To dem-
onstrate reciprocity, however, one must show that the bats will punish cheaters by 
switching partners or decreasing investment to those partners who provide poor returns. 
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 Regurgitated food sharing is found in all three vampire bat species (Wilkinson 
 1984 ; Elizalde-Arellano et al.  2007 ; Carter et al.  2008 ), but has not been found in 
other bats. Work on primates suggests that the evolution of adult food sharing is 
predicted by several factors: the diffi culty of obtaining and processing the diet, 
parental feeding of young, and opportunities for partner choice in other contexts, 
such as mating or other mutualisms (Jaeggi and van Schaik  2011 ). Whereas some of 
these conditions do occur in some other bat species (e.g., parental food sharing from 
cheek pouches in  Noctilio albiventris , Brown et al. 1983, or transfer of a captured 
prey from adult to young in some carnivorous bats,  Megaderma lyra , Raghuram and 
Marimuthu  2007 ;  Vampyrum spectrum , GSW personal observation),  D. rotundus  
satisfy all the conditions.  

12.5.5     Social Grooming 

 Mothers routinely groom their pups (e.g., McLean and Speakman  1997 ), but social 
grooming also occurs between adult bats in some species ( D. rotundus ,  D. youngi , 
 D. ecaudata ,  A. jamaicensis ,  P. hastatus ,  M. bechsteinii , and  Pipistrellus kuhlii , 
Wilkinson  1986 ; Kerth  2008a ; Ancillotto et al.  2012 , GSW and GGC personal 
observation). In some cases, social grooming appears nepotistic and explained by 
kin selection. Kerth et al. ( 2003 b) found that social grooming between adult female 
 M. bechsteinii  was not signifi cantly reciprocal but was correlated with kinship, 
occurring mostly between adult mothers and daughters, sometimes between sis-
ters, and rarely between non-kin. Kin-biased social grooming also occurs in female 
 D. rotundus  (Wilkinson  1986 ). 

 In primates, social grooming provides a social purpose beyond its hygienic func-
tion and has become co-opted over evolutionary time as an important signal of social 
investment. A similar process may have occurred in some bat species .  Consistent 
with this hypothesis, patterns of social grooming do not correlate with patterns of 
self-grooming or amounts of parasites (Wilkinson  1986 ; Kerth et al.  2003 ), and 
reciprocal social grooming remains common among captive-born  D. rotundus  that 
completely lack observable external parasites (Carter and Wilkinson  2013 ). Although 
 D. rotundus  groom themselves less than  M. bechsteinii , female  D. rotundus  groom 
their roostmates about twice as often as female  M. bechsteinii  (Wilkinson  1986 ; 
Kerth et al.  2003 ). When controlling for kinship, social grooming among female 
 D. rotundus  is predicted by roosting association and food sharing and is elevated 
immediately prior to food sharing (Wilkinson  1986 ). When mother- offspring pairs 
are excluded, the effect of roosting association and food sharing on mutual grooming 
exceeds that of relatedness (Wilkinson  1986 ; Carter and Wilkinson  2013 ). 

 The correlation between social grooming and food sharing in  D. rotundus  high-
lights the possibility that cooperative behaviors can lead to cooperative social bonds 
(Carter and Wilkinson  2013 ). For example, one scenario for the evolution of coop-
eration in vampire bats is that regurgitated food sharing evolved initially as part of 
maternal care and was then co-opted as a form of altruism towards other close 
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relatives. Natural selection would reward individuals that preferentially fed those 
relatives that were not only more related but also more likely to reciprocate. Smaller 
investments, such as social grooming between adults, could then act as costly 
 signals for larger social investments (e.g., Roberts and Sherratt  1998 ; Fruteau et al. 
 2011 ) such as food sharing. Since partner fi delity makes cooperative investments 
less risky, the continuation of investments should promote long-term social bonds 
and vice versa.   

12.6     Social Bonds and Complex Cooperation 

 The ages of females in social groups suggest that similarly aged cohorts form roost-
ing associations in many bats (e.g., McCracken and Bradbury  1981 ; Wilkinson 
 1992a ; Brooke 1997; Porter and Wilkinson  2001 ), but little is known about the 
development and formation of social relationships among individuals. When  P. kuhlii  
pups were raised together for 6 weeks in separate groups and then allowed to freely 
interact in a fl ight chamber, young raised in the same groups showed signifi cantly 
higher rates of clustering, social grooming, and roosting near each other (Ancillotto 
et al.  2012 ). 

 Once associations are formed, they might be maintained by eavesdropping on 
echolocation calls (e.g., Jones and Siemers  2011 ; Schuchmann and Siemers  2010 ; 
Voigt-Heucke et al.  2010 ), but this is limited by call amplitude (Hoffmann et al.  2007 ; 
Ruczyński et al.  2009 ). Social calls are lower in frequency, more variable, and travel 
farther distances. Contact calls allow isolated individuals to fi nd and identify roost-
mates at a distance ( D. youngi , Carter et al.  2008 ,  2009 ;  D. rotundus ,  D. ecaudata , 
Carter et al.  2012 ;  Thyroptera tricolor , Chaverri et al.  2010 ; Gillam and Chaverri 
 2011 ;  M. bechsteinii ,  M. nattereri , Schoner et al.  2010 ;  Antrozous pallidus , Arnold 
and Wilkinson  2011 ;  Nyctalus noctula , Furmankiewicz et al.  2011 ) and may also 
carry information about genetic relatedness ( A. pallidus , Arnold  2011 ) or group 
affi liation ( P. hastatus , Boughman and Wilkinson  1998 ). At closer range, recogni-
tion, and perhaps bonding, is likely mediated through social grooming or mutual 
scent marking ( D. rotundus , Wilkinson  1986 ;  N. leporinus , Brooke 1997; 
 M. bechsteinii , Safi  and Kerth 2003;  D. youngi , GGC personal observation). 

 Females are known to form long-term associations in both tropical and temperate 
bat species. For example, unrelated pairs of female  P. hastatus  have been recorded 
roosting together 16 years later (Wilkinson and Boughman  1998 ), and pairs of 
female  D. rotundus  have been found together after 12 years (Wilkinson  1985 ). 
 M. bechsteinii  is a temperate species that maintains social bonds that last over 5 
years and span categories of age, size, reproductive status, and kinship (Kerth et al. 
 2011 ).  M. septentrionalis  form signifi cant associations for at least 3 years (Patriquin 
et al.  2010 ). In both species, relationships persist despite frequent roost switching 
and annual disintegration of group structure during winter. Given that bats are 
unusually long-lived for their size (Wilkinson and South  2002 ), we suspect that 
long-term social bonds occur in many other bat species. 
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 There are several good reasons to maintain long-term rather than short-term 
mutually benefi cial social relationships. Partner fi delity reduces the cost of  searching 
for and learning about partners, allows one to invest gradually in cooperation to 
limit losses from cheating, and bundles the benefi ts from multiple forms of coopera-
tion into a single relationship. For example, affi liated female  D. rotundus  might in 
effect exchange and monitor multiple forms of social investment including social 
thermoregulation, social grooming, information transfer, and food sharing. 
According to this hypothesis, social bonds permit fi tness benefi ts to be mutually 
exchanged and enforced. This hypothesis predicts that change of a social bond by 
increase or decrease of one cooperative behavior will lead to the same change in 
other cooperative behaviors by the social partner. Furthermore, a decrease in one’s 
capacity to perform a helping behavior (e.g., food sharing) could lead to an increase 
in other cooperative behaviors (e.g., grooming) to compensate and maintain the 
social relationship.  

12.7     Future Avenues of Research 

 Many important questions remain regarding social evolution and social behavior in 
bats. Can we predict the patterns of social cooperation across different species based 
on ecological factors and life history traits? Is kinship less important for shaping 
cooperation among bats compared to other social taxa, and if so, why? What mecha-
nisms prevent cheating in helping behaviors such as food sharing and pup guarding? 
To what extent do bats form long-term social bonds or follow particular conspecifi cs 
when foraging, dispersing, or migrating? Have social bat species converged on 
behaviors found in other highly cognitive social mammals? How does social 
 behavior correlate with brain morphology? Do social networks among bats predict 
social transmission of pathogens and parasites? 

 The social lives of bats often play out in dark, elusive places, and the extent of 
direct observations of bat social behavior therefore pales in comparison to those of 
group-living primates, birds, and diurnal mammals. For bats, occasional observa-
tions of roosting aggregations may not be suffi cient to reveal the full extent of social 
relationships. For example, fi ssion–fusion dynamics lead to highly associated bats 
being in different roosts (e.g., Wilkinson  1985 ; Patriquin et al.  2010 ; Kerth et al. 
 2011 ), and large cave colonies might conceal smaller cryptic social networks or 
groups of highly associated individuals. Further advances in the tracking of indi-
viduals through PIT and GPS tags will surely lead to great advances in quantifying 
social network structure in bats. However, direct observation of the social behavior 
of marked individuals, albeit diffi cult, can lead to signifi cant insight into coopera-
tion and confl ict in bats.     
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