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Bats and birds: Exceptional longevity despite high metabolic rates
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1. Introduction

Bats and birds live substantially longer than non-flying
homeotherms of similar body size (Austad and Fischer, 1991; de
Magalhaes et al., 2007; Prinzinger, 1993). Within mammals, the
largest differences in longevity tend to occur between orders,
whereas among birds the largest differences occur between genera
(Fig. 1). On average, maximum bat lifespans are 3.5 times longer
than non-flying eutherian mammals after correcting for body size
(Fig. 1, Wilkinson and South, 2002). Records now exist of tiny bat
‘‘Methuselahs’’, such as the 7 g Brandt’s bat (Myotis brandti),
surviving in the wild for over four decades (41 years, Gaisler et al.,
2003; Podlutsky et al., 2005). Similarly, many birds live three times
longer than mammals of the same body size (Fig. 1, Holmes and
Austad, 1995a; Holmes and Austad, 1995b). Although reports of
centenarian parrots are apocryphal, cockatoos and Amazon parrots
do exhibit extreme lifespans after accounting for body mass
(Munshi-South and Wilkinson, 2006). A salmon-crested cockatoo
(Cacatua moluccensis) named ‘‘King Tut’’ lived at the San Diego Zoo
for at least 65 years (Brouwer et al., 2000); much larger birds, such
as the Andean condor (Vultur gryphus), may live up to 75 years
(Finch, 1990).

Evolutionary theories of longevity provide explanations forwhy
bats and birds have evolved long lifespans. These theories predict
that average lifespan should increase as the probability of death

caused by extrinsic factors (e.g. accidents, infectious disease, and
predation) decreases (Austad and Fischer, 1991). Deleterious
mutations that act late in life will be exposed to relatively strong
selection in populations that do not experience high extrinsic
mortality at young ages (Austad, 1997), and thus will not
accumulate over time. Antagonistic pleiotropy caused by late-
acting deleterious mutations that have positive benefits early in
life will also have a weaker impact on populations with low
extrinsic mortality risk (Partridge, 2001). Experimental data
supporting evolutionary theories are scarce, but natural ‘‘experi-
ments’’ comparing insular vs. mainland populations of both
marsupials (Austad, 1993) and mice (Harper, 2008; Miller et al.,
2000) indicate that insular populations experiencing lower
predation risk have evolved greater longevity. Ageing rates are
directly related to mortality risk in birds and mammals (Ricklefs,
1998; Ricklefs and Scheuerlein, 2001), and flight is believed to be
the primary characteristic that helps birds and bats avoid extrinsic
mortality early in life (Holmes and Austad, 1994). Bats and birds
represent two independent evolutionary origins of flight, and thus
comparative research may reveal common evolutionary pathways
to long lifespan.

Life history tradeoffs may also explain why long lifespans have
evolved in bat and bird species, because lifespan evolves as a
consequence of joint selection for current reproduction along with
survival and future reproduction. The ‘‘disposable soma’’ theory of
ageing predicts that species experiencing low extrinsic mortality
can make substantial investments in growth and somatic
maintenance rather than early reproduction because they will
have many opportunities to reproduce over a long lifespan

Ageing Research Reviews xxx (2009) xxx–xxx

12

3

4

5
6

7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A R T I C L E I N F O

Article history:
Received 11 May 2009
Received in revised form 20 July 2009
Accepted 21 July 2009

Keywords:
Bats
Birds
Flight
Longevity
Ageing
Senescence
Oxidative theory of ageing

A B S T R A C T

Bats and birds live substantially longer on average than non-flying mammals of similar body size. The
combination of small body size, highmetabolic rates, and long lifespan in bats and birds would not seem
to support oxidative theories of ageing that view senescence as the gradual accumulation of damage
frommetabolic byproducts. However, large-scale comparative analyses and laboratory studies on a few
emerging model species have identified multiple mechanisms for resisting oxidative damage to
mitochondrial DNA and cellular structures in both bats and birds. Here we review these recent findings,
and suggest areas in which additional progress on ageing mechanisms can be made using bats and birds
as novel systems. New techniques for determining the age of free-living, wild individuals, and robustly
supported molecular phylogenies, are under development and will improve the efforts of comparative
biologists to identify ecological and evolutionary factors promoting long lifespan. In the laboratory,
greater development of emerging laboratory models and comparative functional genomic approaches
will be needed to identify the molecular pathways of longevity extension in birds and bats.
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(Kirkwood, 2002). However, investments in brain size (Isler and
Van Schaik, 2009), developmental times (Barclay et al., 2004), and
most commonly, reproductive rates (Bennett and Owens, 2002;
Lack, 1968; Speakman, 2008), are believed to induce tradeoffs with
longevity in birds and bats. The tradeoffs operating in these two
taxa are not always the same, but the evidence discussed below
suggests that these tradeoffs exert significant selective pressure on
longevity.

The question of how bats and birds live a long time has attracted
considerable attention, because of the combination of small body
size, long lifespan and high metabolic rate in these groups. These
characteristics seemingly contradict ‘‘rate of living’’ theories of
ageing that propose a positive correlation between body size and
longevity due to lower metabolic rates in larger species (Pearl,
1928). Bats have highermetabolic rates and ultimately use twice as
much energy over their lifetimes compared to other mammals
(Austad and Fischer, 1991). Hibernation slows down the rate of
energy use, and hibernating bats do live 6 years longer on average
than non-hibernating bats (Wilkinson and South, 2002). However,
non-hibernating bats still live longer than other mammals of the
same body size (Brunet-Rossinni and Austad, 2004). Similarly,
birds have higher metabolic rates than mammals (Holmes and
Austad, 1995b), and long-lived bird species use more energy over
their lifetimes (Furness and Speakman, 2008) and have higher field
metabolic rates than shorter lived bird species (Moller, 2008).

The patterns above, combined with the failure of recent studies
to find evidence of a clear relationship between basal metabolic
rate and longevity (de Magalhaes et al., 2007), have prompted
researchers to investigate mechanistic explanations for how the
flying vertebrates avoid negative physiological effects of their high
metabolism. Oxidative theories of ageing predict that reactive
oxygen species (ROS) generated by mitochondrial metabolism
result in cumulative, irreversible damage leading to senescent
decline (Sanz et al., 2006). Bats and birds would seemingly provide
little support for this hypothesis given that their high metabolic
rates should result in substantial oxidative stress and ageing
(Buffenstein et al., 2008). However, belowwe review recent studies

that provide evidence of specific physiological mechanisms
throughwhich bats and birds either prevent or repair ROS damage.

Bats and birds are potentially excellent non-model systems to
examine the evolution of longevity, especially in a comparative
framework. Large longevity and life history datasets collected
fromwild populations now exist for both groups, primarily due to
long-term banding studies (Ricklefs, 2008; Wilkinson and South,
2002) and increasingly sophisticated ageing methods (Brunet-
Rossinni and Wilkinson, 2009; Chaney et al., 2003; Vleck et al.,
2003). Some long-lived birds, such as the parrots, have been kept
in captivity for a long enough time to amass corroborated
maximum lifespans for many species (Brouwer et al., 2000). Most
of these records are freely available to researchers in a well-
curated online database (AnAge, de Magalhaes et al., 2005).
Comparative analyses have also benefited from the development
of methods, such as independent contrasts analysis, that control
for phylogenetic effects (Garland et al., 1992). Species data cannot
be treated as statistically independent because species are related
by descent from common ancestors (Felsenstein, 1985), but
shared phylogenetic history has not always been accounted for in
comparative ageing studies (Speakman, 2005). The availability of
well-supported phylogenies was previously an impediment to
these types of analyses, but the increasing acceptance of
consensus ‘‘supertrees’’ (all extant mammals, Bininda-Emonds
et al., 2007, bats, Jones et al., 2002, oscine passerine birds, Jonsson
and Fjeldsa, 2006) and the production of robust molecular
phylogenies (parrots, Wright et al., 2008) have largely removed
these impediments.

Mechanistic research on longevity in bats and birds has lagged
because few species have been kept in laboratory colonies (Holmes
and Ottinger, 2003). However, the number and diversity of bird
species in labs is slowly increasing, with long-lived budgerigars
(Melopsittacus undulatus) showing particular promise as a model
system (Ogburn et al., 2001; Pamplona et al., 2005). Captive bat
colonies have been maintained for behavioral and physiological
studies in the past (Brunet-Rossinni and Austad, 2004), and now a
few extremely long-lived Myotis species are emerging as ageing
research models (Brunet-Rossinni, 2004). These advances suggest
that bats and birds are leading candidates for the ‘‘non-model’’
outgroup system sought by ageing researchers (Holmes and
Kristan, 2008).

2. Longevity research in bats

2.1. Evolution of long lifespan and the risk of extrinsic mortality in
bats

Hypothetical selective pressures responsible for the evolution
of long lifespan in bats generally fall into two categories: (1)
adaptations that lower the risk of extrinsic mortality (evolutionary
theories of ageing), and (2) life history tradeoffs that favor long
lifespan (disposable soma theory of ageing). Escape from extrinsic
mortality due to the evolution of flight in bats is consistent with
evolutionary theories for long lifespan, but convincing evidence for
a general association between flight and longevity in mammals is
scarce. Flying and gliding mammals exhibit longer lifespans
(Austad and Fischer, 1991; Holmes and Austad, 1994), but flight
or gliding behavior have evolved so few times in mammals that
rigorous, phylogenetically controlled studies are not possible.

Roosting in caves should lower the risk of extrinsicmortality for
bats, as caves provide protection from extreme weather events.
Caves may also be inaccessible to predators, and communal
roostingmay provide increased vigilance against predators that do
reach the cave. Among chiropterans, bats that occasionally roost in
caves live longer than bats that never or always use caves,
independently of reproductive rate, body mass, hibernation, or
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Fig. 1. Percent variance explained in logmaximum longevity for 993 species of birds
and 977 species of mammals. These values were obtained from amixedmodel with
log body weight as a covariate and taxonomic level as nested random effects using
JMP 5.0.1.2. Body weight and longevity data were taken from the AnAge database
(de Magalhaes et al., 2005). The ‘‘Species’’ category refers to the longevity for each
species corrected for body weight (i.e. the residuals from the mixed model).
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phylogenetic effects (Wilkinson and South, 2002). It is unclear why
obligate cave roosting is not associatedwith lifespan extension, but
increased transmission of disease or ectoparasites in permanent
cave roosts may influence extrinsic mortality rates. Species
richness of parasitic bat flies is higher in enclosed, permanent
roosts (Bordes et al., 2008), and bats within these roosts exhibit
greater prevalence and intensity of parasitism (especially females,
Christe et al., 2007; Patterson et al., 2007). Field experiments have
also confirmed that some bats switch roosts to avoid the costs of
ectoparasite load (Reckardt and Kerth, 2007).

Hibernation may also reduce extrinsic mortality risk by
protecting bats from extremeweather or starvation during periods
of resource shortage. Initial studies did not find that hibernating
bats live longer than non-hibernating species (Austad and Fischer,
1991; Herreid, 1964), but analysis of a larger dataset revealed a
positive association between hibernation and longevity indepen-
dent of body size, reproductive rate, and phylogenetic effects
(Wilkinson and South, 2002). Latitude was not an effective
predictor of longevity after controlling for hibernation and
phylogenetic effects in this analysis, despite a predicted associa-
tion of high latitude and long hibernation times. The current
longevity record holder among bats is a 41-year-old M. brandti in
Siberia (Podlutsky et al., 2005), andmultiple individuals have lived
over 25 years in this population. An association between longer
duration of hibernation and increased lifespan should not be
discarded until more data from hibernating bats are available.

2.2. Physiological tradeoffs and longevity in bats

Hibernation may also extend lifespan in bats by reducing the
costs of reproduction relative to body size. Wilkinson and South
(2002) found that hibernating species have lower reproductive
rates, but that reproductive rate increases with body mass in
hibernating bats. The disposable soma theory predicts that ageing
results from progressive physiological deterioration when
resources are allocated to reproduction rather than somatic
maintenance and repair (Kirkwood, 2002). Hibernation in bats,
by reducing the need for somaticmaintenance forweeks tomonths
per year, may conserve resources that can be used later for
reproduction.

Physiological tradeoffs between reproductive rate, investment
in offspring, and lifespan in bats also support the disposable soma
theory. Bats generally exhibit lower reproductive rates than
shorter livedmammals (Barclay et al., 2004), andwithin Chiroptera
lifespan is shortened among species with high reproductive rates
regardless of whether the longevity record comes from captive or
wild individuals (Wilkinson and South, 2002). Within some
species, such as Rhinolophus ferrumequinum, individuals that breed
earlier also exhibit reduced lifespan compared to individuals that
breed later (Ransome, 1995). Rates of embryo development and
postnatal growth also explain a significant proportion of variation
in ageing-related mortality among mammals (Ricklefs, 2006;
Ricklefs and Scheuerlein, 2001). A recent analysis of 606 mammal
species that accounted for phylogeny further indicated that species
that live a long time for their body size (i.e. bats and primates) take
a long time to reachmaturity (deMagalhaes et al., 2007). Energetic
investment in rapid development and early reproduction is
predicted to impose a cost on somatic maintenance later in life,
and these results from mammals provide support for this idea.
However, the evolution of these same life history traits may be
influenced by extrinsic mortality rates, and thus disposable soma
and evolutionary theories of ageing may not provide simple,
mutually exclusive explanations for lifespan evolution. In other
words, it is difficult to distinguish between evolutionary changes in
lifespan that are due to life history changes driven by extrinsic
mortality vs. life history tradeoffs driven by other factors.

2.3. Potential biomarkers of longevity in bats: fibroblast replication
and calpain activity

The exceptional longevity of bats has been noted for a few
decades now, but few mechanistic ageing studies have been
conducted on bats in the laboratory. Rohme (1981) included one
bat (Vespertilio murinus) in an analysis of fibroblast lifespan and
longevity of eight mammalian species that sought to examine the
hypothesis that fibroblast activity is regulated by a process related
to organismal longevity. Fibroblast life span was positively
correlated with species maximum life span in this study, and
the bat species had the third longest period of fibroblast activity
despite its relatively small body size. This study has been criticized
for mixing adult- and embryo-derived fibroblasts with different
replicative potential (Cristofalo et al., 1998), and an earlier analysis
found no association between fibroblast replication and longevity
in mammals (Stanley et al., 1975). A recent analysis of cell lines
from 1 bat and 10 othermammalian species found that body size is
a much better predictor of fibroblast replication than maximum
longevity (Lorenzini et al., 2005). Some long-lived species in this
study still exhibited very high fibroblast proliferation after
controlling for body size, but the authors are silent on whether
the bat species (Eptesicus fuscus) was among them.

Calpain activity in the brain has been implicated as a biomarker
of longevity in bats, but only one study has been completed to date
(Baudry et al., 1986). Calpains perform important proteolysis
functions inmany cell types, and elevated calpain activity has been
hypothesized to result in cellular ageing due to overactive
destruction of structural proteins and coupled generation of
cell-damaging protein fragments (Nixon, 2003). Calpain-related
tissue degeneration manifests in several human ageing disorders,
including cataract formation, arthritis, and Alzheimer’s disease.
Baudry et al. (1986) hypothesized that calpain activity in brain
tissue from two long-lived bat species (Antrozous pallidus and
Tadarida brasiliensis) would be lower than calpain activity in the
brain of the short-lived laboratory mouse. While this study did
confirm lower levels of calpain activity in bat vs. mouse brains,
larger comparative datasets are needed to confirm whether this
mechanism is a prominent explanation for extended bat lifespan.

2.4. Mitochondrial DNA mutation rates, oxidative damage, and
longevity in bats

Themajority of studies onmechanisms of longevity in bats have
tested predictions of free radical or oxidative stress theories of
ageing. These theories describe the ageing process as the result of
accumulating cellular damage from reactive oxygen species (ROS)
that are produced continuously throughout life by aerobic
metabolism (Sanz et al., 2006). Long-lived species should
experience less oxidative damage from ROS and/or have better
defenses against such damage, but some controversy remains over
whether long-lived, non-model organisms such as bats generally
exhibit these characteristics (Buffenstein et al., 2008). Several
recent studies have reported characteristics of the bat mitochon-
drial genome that may protect against oxidative damage to
mitochondrial DNA (mtDNA). The mitochondrial genome should
be particularly susceptible to deleterious mutagenesis due to the
proximity of mtDNA to the site of ROS generation; mtDNA also
contains many direct repeats that are inherently more susceptible
to deletions that degrade mitochondrial function over time.
Khaidakov et al. (2006) reported that bats have significantly fewer
direct mtDNA repeats (of 8–10 bp) than other mammals, and
predict that a lower mtDNA deletion rate partially explains
exceptional longevity in bats. However, all vespertilionid bats
possess direct, tandem repeats of a 78–85 bp portion of themtDNA
control region (Wilkinson et al., 1997), and this family contains
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species with the greatest range of size-adjusted longevity of any
family of mammals (Fig. 2). Given that duplication and deletion
events may be common in the mtDNA of vespertilionid bats
(Brunet-Rossinni and Wilkinson, 2009; Wilkinson and Chapman,
1991), a relationship between direct repeats and longevity is not a
simple explanation for bat lifespans.

Mitochondrial theories of ageing predict that long-lived species
will exhibit lower mtDNA mutation rates as an adaptation to
reduce cumulative damage from ROS (Kujoth et al., 2007). In a
comparative study of cytochrome b neutral substitution rate in
1696 mammalian species, Nabholz et al. (2008) found that bats
(n = 222 spp.) exhibit substitution rates that are two times lower
on average than substitution rates in rodents (n = 734 spp.), despite
6.6 times lower body size of the bats. They propose that genes
involved inmtDNA replication or oxidative stress reduction should
be under stronger selective pressure in long-lived bats than in
short-lived rodents, resulting in a lower mitochondrial mutation
rate among bats. Further support for this hypothesis comes from
the finding that synonymous substitution rates for nine mitochon-
drial genes, but not rates from six nuclear genes, are negatively
correlated with maximum lifespan in mammals (including several

bat species) after accounting for body mass and phylogeny (Welch
et al., 2008). Additionally, GC content in mtDNA genes is positively
correlated with longevity in bats and other long-lived mammals,
possibly due to a lower substitution rate resulting from protection
against ROS-driven mutagenesis (Lehmann et al., 2008; Min and
Hickey, 2008).

While low rates of synonymous substitutions provide indirect
evidence of protection from ROS damage to mtDNA in bats, high
rates of change in mitochondrial amino acid sequences may
indicate direct genetic adaptations associated with long lifespan.
Rottenberg (2006) reported a positive correlation between
maximum longevity and substitution rate in peptides coded for
by ATP6, cytochrome b, and ND3 mitochondrial genes among 72
mammalian genera (including three chiropteran genera). A
subsequent study that included 11 bat and 80 mammalian genera
found that the relative rate of cytochrome b evolution was
positively correlated with the residuals of maximum longevity
after factoring out bodymass and basalmetabolic rate (Rottenberg,
2007a). Given that long-lived bats have relatively high metabolic
rates for their body size, Rottenberg (2007a) suggests that
accelerated evolutionary rates in mtDNA proteins could facilitate
the evolution of long lifespan by producing mutations that reduce
ROS generation. Although few bats were included in the analysis,
Moosmann and Behl (2008) found a strong negative correlation
between cysteine percentage in mtDNA-encoded proteins and
maximum longevity in a wide diversity of animal species. Cysteine
is particularly susceptible to damage from ROS, and thus a high
mutation rate in mitochondrial proteins may facilitate strong
purifying selection that removes cysteine in long-lived bat species.
Taken together with lower synonymous substitution rates, these
results suggest that mtDNA is an active target of ageing-related
natural selection in bats.

2.5. Generation of reactive oxygen species and antioxidant activity in
bats

Physiological studies in the laboratory have also supported
oxidative stress theories of ageing in bats. Little brown bat (Myotis
lucifugus, maximum longevity = 34 years) mitochondria generate
less than half the amount of hydrogen peroxide per unit of oxygen
consumed compared to mitochondria from short-tailed shrews
(Blarina brevicauda, maximum longevity = 22 years) or white-
footed mice (Peromsycus leucopus, maximum longevity = 7.9
years); hydrogen peroxide is a highly reactive substance known
to cause damage to cells and mitochondria, resulting in progres-
sively degraded metabolic activity (Brunet-Rossinni, 2004).
Endothelial cells from the arteries of M. lucifugus also generate
fewer ROS, and are more resistant to induced cell death from ROS,
than P. leucopus cells (Ungvari et al., 2008). Fibroblast cell lines
from M. lucifugus, mentioned above for exhibiting long replicative
lifespans in other bat species, also exhibit heightened resistance to
hydrogen peroxide- or cadmium-induced apoptosis compared to
mouse fibroblasts, but not to UV light, the free radical generator
paraquat, or a DNA alkylating agent (Harper et al., 2007). These
results provide robust evidence that at least one species of long-
lived bat experiences less cellular damage from an important ROS
(hydrogen peroxide) than shorter lived rodents, but it is not yet
clear whether this finding results from greater mitochondrial
efficiency or reduced constitutive activity of oxidoreductases
(Ungvari et al., 2008) andwhether it occurs among other long-lived
bat species.

Molecular adaptations for detoxifying or repairing damage
from ROS are predicted to evolve in long-lived species (Zimniak,
2008), but few studies have convincingly Q1documented such
phenomena in bats. Wilhelm et al. (2007) examined several
potential antioxidant defenses in five South American bat species,
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Fig. 2. The top 20mammal (top) and bird (bottom) families with regard to the range
of residual values from the mixed model illustrated in Fig. 1. Thus, those families
with the largest ranges have the greatest variation inmaximum longevities, relative
to their body size.

J. Munshi-South, G.S. Wilkinson / Ageing Research Reviews xxx (2009) xxx–xxx4

G Model

ARR 237 1–8

Please cite this article in press as: Munshi-South, J., Wilkinson, G.S., Bats and birds: Exceptional longevity despite high metabolic rates.
Ageing Res. Rev. (2009), doi:10.1016/j.arr.2009.07.006

http://dx.doi.org/10.1016/j.arr.2009.07.006


U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

but either did not find significant differences between activity in
bat vs. rodent tissue, or did not perform comparisons between the
same tissue types from bats and rodents. Greater superoxide
dismutase activity in bat vs. rodent liver was one exception,
indicating that bats may exhibit enhanced enzymatic protection
from one ROS (i.e. superoxide). Torpid individuals of the little
yellow-shouldered bat (Sturnira lilium) exhibited greater super-
oxide dismutase and catalase blood levels compared to active
individuals (Wilhelm et al., 2007), which provides intraspecific
support for the positive evolutionary association between hiber-
nation and maximum lifespan among bats (Wilkinson and South,
2002). However, these results should be interpreted with caution
given the small number of individuals (n = 5 active and 3 torpid
individuals) examined by Wilhelm et al. (2007) and Brunet-
Rossinni’s (2004) finding of no difference in superoxide dismutase
activity between little brown bats, mice, and shrews.

3. Longevity research in birds

3.1. Flight, social behavior, and the evolution of lifespan in birds

Birds generally live longer than non-flying mammals of similar
body size (Lindstedt and Calder, 1976; Prinzinger, 1993),
presumably due to lower extrinsic mortality rates that expose
late-acting deleterious mutations to purifying selection (Holmes
and Austad, 1995a; Ricklefs, 1998). As for bats, there are too few
known, independent origins of flight in birds for a phylogenetically
controlled analysis of associations between the evolution of flight
and long lifespan. Several hypotheses have been examined to
explain variation in maximum lifespan with Aves. However,
general explanations for the evolution of long lifespan in birds have
proved elusive, potentially due to flight acting as an energetically
costly constraint on variation in bird lifespan (Ricklefs and Cadena,
2008).

Associations between the evolution of sociality from breeding
pair ancestors and the evolution of long lifespan have recently been
predicted by multiple authors. Ridley et al. (2005) provide
theoretical justifications for this pattern based on (1) increased
likelihood that long-lived subordinates in social specieswill inherit
ecologically valuable territories, or (2) increased likelihood of
reciprocal altruism among neighboring individuals that protects
the interests of long-lived, local residents. The reciprocal altruism
hypothesis may operate most effectively in environments with
unpredictable resources, and is predicted to create a positive
feedback loop favoring longer lifespan and greater rates of
altruistic behavior (Ridley et al., 2005). Long lifespan has also
been identified as crucial to the evolution of family living in birds
because longevity favors delayed reproduction and large invest-
ments in offspring (Covas and Griesser, 2007). Parrots exhibit a
significant positive association between communal roosting and
longevity after factoring out body size and phylogeny, but this
pattern is statistically dependent on an association between
longevity and diet type (Munshi-South and Wilkinson, 2006).
Blumstein and Moller (2008) found that cooperative parental care
(a proxy of sociality) is not associated with longevity in 257 North
American bird species after factoring out body size, survival rate,
and age at first reproduction, regardless of whether species data or
phylogenetically independent contrasts were analyzed.

3.2. Physiological tradeoffs and longevity in birds

Tradeoffs between energy expenditure and longevity, key
predictions of the disposable soma theory of ageing, have not
typically been found in birds. One clear exception is the rate of
embryo growth, which is positively associated with the rate of
ageing-related mortality in birds (Ricklefs, 2006). Age at first

reproduction did not affect subsequent longevity in captive zoo
populations of 12 bird species, although tradeoffs could still
operate on wild populations experiencing resource shortages
(Ricklefs and Cadena, 2007). Longevity of southern African
passerines with insectivorous or nectarivorous diets is twice that
of granivorous species, but Peach et al. (2001) argued that shorter
granivore lifespan is due to their larger clutch size. However,
Munshi-South and Wilkinson (2006) found that granivorous
parrots live longer and have more progeny per year than
frugivorous/nectarivorous or omnivorous parrots.

Maximum lifespan is also positively associated with brain size
in birds, even though brain tissue requires a greater physiological
investment than other somatic cell types. Large-brained species
experience a tradeoff between brain tissue and maximum rates of
population increase, but cooperatively breeding birds with altricial
young overcome this tradeoff through supplemental feeding of
young by non-parent helpers (Isler and Van Schaik, 2009). In
general, long-lived bird species exhibit faster resting metabolic
rates and higher daily and lifetime energy expenditure than
shorter lived bird species (Furness and Speakman, 2008). These
associations are no longer significant after factoring out phylogeny
and body mass covariance, and taken together these results
provide little support for the disposable soma theory in birds.

3.3. Genome size and longevity in birds

Compared to bats, greater research effort has been expended on
interspecific comparative analyses of longevity-extending
mechanisms in birds. One such analysis that currently lacks a
convincing biological mechanism is a positive correlation between
longevity and genome size in birds (independent of family-level
phylogenetic effects, Monaghan and Metcalfe, 2000). This study
has been criticized because a subsequent longevity analysis did not
find any association with genome size (Ricklefs and Scheuerlein,
2001), and a reanalysis of Monaghan andMetcalfe’s (2000) dataset
did not find an effect of avian genome size when factoring out
species-level phylogenetic effects (Morand and Ricklefs, 2001).
However, the original study (Monaghan and Metcalfe, 2000) used
longevity estimates from banded wild birds whereas Ricklefs and
Scheuerlein (2001) did not account for phylogeny and used records
from zoo animals that may not experience substantial extrinsic
mortality (Monaghan and Metcalfe, 2001). A subsequent analysis
that used a much larger bird database did not find an association
between avian longevity and genome size (Gregory, 2002).
However, parrots do exhibit a positive correlation between
genome size and longevity despite high metabolic rates, poten-
tially because adaptations to avoid damage from ROS do not
constrain genome size evolution as greatly as in other species
(Costantini et al., 2008). Parrots are among the longest-lived avian
families (Fig. 2, Munshi-South and Wilkinson, 2006); shorter lived
avian families may exhibit consistently smaller genome sizes than
parrots due to constraints imposed by oxidative DNA damages.

3.4. Latitude, migration and longevity in birds

Other comparative studies of avian longevity have tested
hypotheses derived from rate of living and oxidative stress theories
of ageing. Moller (2007) reported that rates of senescence
decreased with increasing migration distance among 169 avian
species, and increased with latitude as predicted by the slower life
histories of tropical birds. Migration and/or tropical residence may
result in lower exposure to extrinsic mortality if species migrate or
remain in relatively benign environments. Additionally, migratory
species may boost antioxidant levels to combat damage from ROS
generated by highmetabolic rates duringmigration, although such
adaptations have not been described (Moller, 2007). A common-
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garden experiment on nestling stonechats (Saxicola torquata)
found that resting metabolic rates were lower in individuals from
sedentary tropical populations compared to individuals from
northernmigratory populations (Wikelski et al., 2003). These types
of experimental approacheswill need to be carried out over the full
lifespan of long-lived birds to elucidate relationships between
longevity, latitude, migration, and anti-ageing mechanisms.

3.5. Telomere length and longevity in birds

Telomeres, repetitive sequences that cap the ends of eukaryotic
chromosomes (Pauliny et al., 2006), have recently been identified as
sites of interest to avian ageing research due to their role in
chromosome stability and cellular replication. Longer telomeres are
more likely to prevent chromosomes from fusing together at their
ends over time than shorter telomeres (Blackburn, 2000), and thus
accumulated oxidative damage to telomeresmay act as a constraint
on cellular replicative lifespan. Short-lived bird species lose
telomeric repeats at a faster rate than long-lived species, but
absolute telomere length does not correlate with longevity
(Haussmann et al., 2003; Vleck et al., 2003). Residual telomere
length predicts longevity in sand martins (Riparia riparia), suggest-
ing that both individuals and species with longer telomeres may
exhibit longer lifespans (Pauliny et al., 2006). One exceptionally
long-lived species, the storm petrel (Oceanodroma leucorhoa), does
not exhibit telomere shortening across its life span, and may be
released from the telomere limit to cellular replication (Haussmann
et al., 2003). There is considerable variation in telomere length
among storm petrel chicks but not adults, suggesting that selection
removes short-telomere individuals from the population (Hauss-
mann and Mauck, 2008). Telomere studies from other long-lived
birds have found that telomere shortening preferentially occurs at
earlier life stages, and correlates with life history variables such as
hatching date and rate of body mass change (Hall et al., 2004).
Further experimental work will be needed to determine if telomere
shortening is a primary cause of ageing or a consequence of related
life history tradeoffs. Recent findings from mammals indicate that
telomere shortening occurs due to repression of telomerase,
potentially as an anti-cancermechanism that prevents uncontrolled
cell proliferation (Gorbunova and Seluanov, 2009). Replicative
senescence resulting from low telomerase activity is associatedwith
large body mass, but not shorter lifespan, in mammals (Seluanov
et al., 2007). Future research on telomere length–longevity
associations in birds should examine whether high telomerase
activity explains long lifespan, especially in large-bodied species
such as the storm petrel.

3.6. Resistance to oxidative damage in birds

Several bird species, many with a long history of captive
breeding, have recently been adopted as laboratory models of
ageing. Many of these species exhibit less damage from ROS than
short-lived laboratory rodents, particularly in reactions involving
harmful byproducts from glycoxidation reactions (reviewed in
Holmes and Ottinger, 2003). Two cage species that exhibit long
maximum lifespans for their body size, budgerigars (M. undulatus,
21 years) and canaries (Serinus canarius; 24 years), have been
particularly useful for comparative laboratory studies of ROS
generation and oxidation. Budgerigar cell cultures display
enhanced survival compared to Japanese quail (Coturnix coturnix,
maximum longevity = 11 years) cells when exposed to oxygen or
hydrogen peroxide challenges (Ogburn et al., 2001). Budgerigars
and canaries also exhibit significantly lower levels of oxidative
damage to both proteins and lipids in brain and heart tissue
compared to laboratory mice (Herrero and Barja, 1999; Pamplona
et al., 2005). Furthermore, heart cells from budgerigars and

canaries are less sensitive to lipid peroxidation than cells from
pigeons or rodents because cell membranes from the former
species have lower fatty acid unsaturation (Pamplona et al., 1999).
Saturated membrane fatty acids are potentially a general cellular
mechanism for protection against oxidative damage, asmany long-
lived mammals exhibit a high degree of membrane saturation as
well (although bats have not yet been examined, Hulbert, 2008;
Hulbert et al., 2006, 2007).

Cellular resistance to oxidative damage in long-lived birds is
now a well-documented phenomenon, but research on the
biochemical and genetic mechanisms have lagged behind.
Rottenberg (2007b) has documented very high rates of cytochrome
b evolution in long-lived finches (Family Fringillidae, including the
laboratory canary) that correlates with mass-corrected longevity.
Base-pair substitutions are particularly common in a ubiquinone
binding site that may be selected for increased reduction of
ubiquinone damage (Rottenberg, 2007b). Future genomics work
may generate many more hypothetical targets of selection in the
mtDNA genome for enhanced lifespan through suppression of
oxidative damage or ROS generation.

4. Improvements and future directions

The recent, substantial progress in understanding the excep-
tional longevity of the flying vertebrates has been derived from
two types of research: (1) comparative, phylogenetically con-
trolled studies that examine associations between maximum
lifespan and other biological (primarily life history) variables
among dozens or even hundreds of species, and (2) laboratory
analysis of genetic and physiological mechanisms (primarily those
implicated in oxidative damage theories) that extend longevity in a
few non-model or emerging model species. The former studies are
currently limited by the quality of the lifespan and life history
estimates for birds and bats. Banding studies have provided
increasingly long lifespan records for many species (Martino et al.,
2006; Podlutsky et al., 2005), but new lifespan estimates for
currently unstudied species may require time frames longer than
the careers of individual scientists. Development of new methods
to age bats and birds could provide data much faster and in larger
quantities, although to date research into potential age biomarkers
in bats (such as measures of accumulated oxidative damage) is
scarce (Brunet-Rossinni and Wilkinson, 2009). Telomere length in
birds (Vleck et al., 2003) and non-flying mammals (Nakagawa
et al., 2004) has recently been shown to undergo predictable
decline with age in several species. Although well supported by
many studies, this measure still suffers from highly variable, non-
linear, or no decline in telomere lengthwith age in some taxa (Juola
et al., 2006; Nakagawa et al., 2004), potentially due to telomerase
levels that vary with biological characteristics other than age (such
as body mass in mammals, Gorbunova and Seluanov, 2009). When
validated for individual species, however, telomere shortening
may be an important tool for age estimation going forward. Other
methods, such as the predictable accumulation of pentosidine or
other metabolic byproducts over time in bird tissue (Chaney et al.,
2003; Fallon et al., 2006), are promising but have only been
validated for a relatively small number of species. Development of
these methods will require substantial effort, but the ability to
accurately estimate age classes in wild populations will provide
information on the ageing process rather than simple correlates of
maximum lifespan. Understanding senescent decline in reproduc-
tion and other fitness correlates may ultimately lead to a robust
integration of ageing research with evolutionary and ecological
concepts (Monaghan et al., 2008; Ricklefs, 2008).

Comparative studies are also limited by the quality of
phylogenetic estimates that are available to researchers. Methods
such as independent contrasts analysis correct for the bias of
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phylogenetic inertia, but require highly resolved trees to generate
statistical power that resembles simple species comparisons.
Phylogenetic supertrees, consensus estimates of previously
published trees from multiple datasets, are now available for bats
(Jones et al., 2002) and some groups of birds (Jonsson and Fjeldsa,
2006; Thomas et al., 2004). These supertrees will be improved over
time as highly resolved molecular phylogenies are generated, and
may help ageing researchers to uncover new evolutionary
correlates of longevity and strengthen currently known relation-
ships. Comparative approaches, while previously used primarily to
examine life history and ecological correlates of longevity
(Munshi-South and Wilkinson, 2006; Wilkinson and South,
2002), are now also being used to examine the generality of
physiological mechanisms of long lifespan (Holmes and Kristan,
2008). Non-model approaches may lead to blind alleys in the
search for general mechanisms if focal species have relatively
unique ageing mechanisms. Comparative analyses identify com-
mon mechanisms in long-lived species that are not confined to
only a few branches of the vertebrate tree.

Finally, greater effort should be devoted to developing new bat
and avian laboratorymodels and utilizing current avianmodels for
ageing research. As has been noted previously (Brunet-Rossinni
and Austad, 2004; Brunet-Rossinni and Wilkinson, 2009), many
captive bat colonies have been maintained by researchers for long
periods of time and could easily be utilized for ageing research. The
little brown bat (M. lucifugus) is perhaps the most promising
candidate given its ease of attainability in North America,
moderate needs in captivity, relatively long life span (30 years,
Ungvari et al., 2008), availability of genomic sequence and previous
research that has identified physiological targets for mechanistic
research (Brunet-Rossinni, 2004). Comparisons between domestic
chicken, Japanese quail, zebra finch, canary, and budgerigar have
already led to useful insights. Additional candidates can be
identified in families that exhibit the greatest variation in
maximum lifespan relative to body size (i.e. families that contain
both short and long-lived species). Among mammals, vespertilio-
nid bats exhibit much greater lifespan variation than species in
other families (Fig. 2). The Laridae (gulls), Corvidae (crows and
jays), and Fringillidae (true finches) provide the best possibilities
for comparisons of anti-ageing mechanisms in bird species pairs
with contrasting lifespans (Fig. 2). Genomic approaches that
examine genes under selection in long-lived vs. short-lived related
species or long-lived vs. short-lived strains of canaries or zebra
finches will lead to discovery of biochemical mechanisms for
resistance to oxidative stress. The chicken and zebra finch
genomes, plus the little brown bat and several other mammalian
genomes, have been or are currently being sequenced. Given the
availability of complete mitochondrial and nuclear genomes for
many species, and the increasing ease of sequencing entire nuclear
transcriptomes of non-model organisms (Ellegren, 2008), com-
parative functional genomics should play a leading role in future
ageing research on birds and bats (Austad, 2005).
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