Life history, longevity and aging

e Population ecology
e Life history evolution
* Reproductive value

* Longevity and senescence



Exponential population growth

b = birth rate
d = death rate
r = intrinsic rate of

!

population growth 8

dN/dt = (b-d)N :
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39.5 Exponential growth curve



Logistic population growth

Addition of a density dependent term results in logistic growth
K = carrying capacity
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Age-specific population growth

e Age-specific survivorship (1,)

e Age specific reproduction (m, )

* Net reproductive rate: R, =2 1.m,
— Stable population: R_ =1
— Growing population: R > 1

— Declining population: R < 1



The age-specific survival (1) and
fertility (m, ) pattern specifies an
organism’s life history pattern.



Fertility (m, ) patterns

NUMBER OF FEMALE OFFSPRING
PRODUCED PER FEMALE (my)

AGE OF ORGANISM

5 FERTILITY CURVE for human louse. This example is typical of
organisms that reach sexual maturity at a definite age and remain
fecund until death.



Estimating
Survivorship (1)
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Survivorship
curve examples
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Log survivorship

Bat survivorship curves
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r vs K selected

TABLE 4.4 Some of the Correlates of r and K Selection

r Selection K Selection

Climate Variable and/or unpredict- Fairly constant and/or pre-

able; uncertain dictable; more certain
Mortality Often catastrophic, non- More directed, density

directed, density inde- dependent

pendent
Survivorship Often Type III Usually Types I and 11
Population size Variable in time, non- Fairly constant in time,

equilibrium; usually well
below carrying capacity
of environment; unsatu-
rated communities or por-
tions thereof; ecologic
vacuums; recolonization
each year

Intra- and interspecific Variable, often lax
competition

Selection favors 1 Rapid development
2 High maximal rate of
INCrease, rmax
3 Early reproduction
4 Small body size
5 Single reproduction

Length of life Short, usually less than
1 year
Leads to Productivity

equilibrium; at or near
carrying capacity of the
environment; saturated
communities; no recolo-
nization necessary

Usually keen

1 Slower development

2 Greater competitive
ability

3 Delayed reproduction

4 Larger body size

5 Repeated reproductions

Longer, usually more than
|l year

Efficiency

Source: After Pianka (1970).



Mean annual adult survivorship

Life history trade-offs

expected with limited resources

Lizards
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Relationship between annual fecundity
and adult mortality in several populations
of birds ranging from albatross (low) to
sparrow (high). (From data in Ricklefs
1977).



Reproductive value

Age-specific expectation of offspring (how much is
a female worth in terms of future offspring?)

Assuming a stable population (R = 1)
V., =& _m 1)/,
— the number of female offspring produced at this moment

by females of age x or older / the number of females
which are age x at this moment

Reproductive value peaks near puberty in human
populations



Reproductive
value curves

Lizards

Crustacea
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Evolutionary theory of aging

The risk of extrinsic mortality should influence life
span because the force of natural selection declines
with age

Consequently, mutations with late-acting deleterious

effects will not be eliminated (referred to as
antagonistic pleiotropy)

Senescence should result and shorten life span in
proportion to mortality risk

Expect that investing in early reproduction will
detract from survival - the “disposable soma” i1dea






PERCENTAGE OF PERFORMANCE

Human aging
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Human longevity

How old was the oldest human?

— Jeanne Calment, 122 years old

How old 1s the oldest human”
— Edna Parker, 1135 years old

Is longevity sex-biased?

— Yes, 90 of 100 oldest humans are female

Can we live longer?



V, World Health
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In almost every country, the proportion of people
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Bat
Methuselahs

Myotis brandti (38 yrs, 8 g)
Myotis lucifugus (34 yrs, 7 g)
Myotis blythii (33 yrs, 23 g)

Pteropus

Giganteus
(31 yrs, 1 kg)

Rhinolophus ferrumequinum (31 yrs, 24 g)



Aging studies and bats

Bats are long-lived because they save energy by going into
torpor or hibernate (Bouliere 1958)

But, nonhibernating tropical bat species live as long as
temperate species (Herreid 1964)

Furthermore, bats live longer than expected for their body

size even after adjusting for metabolic differences
(Jurgens and Prothero 1987)

And, marsupials, which have lower metabolic rates than

bats, have much shorter life spans (Austad and Fischer
1991)

Flying mammals live longer than nonflying mammals
(Holmes and Austad 1994)



Possible factors influencing
extrinsic mortality risk in bats

 Body size

e Group size

e Cave roosting

e Diet

e Hibernation (Latitude)

e Reproductive rate



Longevity records for bats

Data sources on longevity Distribution by family

56 from publications Pteropidae - 5

8 from unpublished studies Emballonuridae - 1
Megadermatidae - 1
Rhinolophidae - 4

Distribution by source Noctilionidae - 1

Phyllostomidae - 8

Molossidae - 2

Vespertilionidae - 42

Captive - 16
Field - 48

ANOVA:F | ¢, =1.3,P=0.25 ANOVA (log long): F ; 5, =2.1,P =0.064



Under a Brownian motion model of evolution, d1, d2, and d3 provide
independent comparisons. Path length differences are ignored in this

illustration.
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Longevity and body mass in
nonflying eutherian mammals
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Log maximum longevity (yr)
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(Austad & Fischer, 1991)



Longevity and body mass in bats
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Longevity (y)

Colony size and longevity
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Longevity (y)

Roosting habits and longevity
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Longevity (y)

Frugivory and longevity
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Reproductive effort variation

1 pup/yr 1 pup/4-6 mos 2 pups/yr

Rhinolophus darlingi Carollia perspicillata Nyctophilus gouldi
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Reproductive effort and longevity
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Hibernation

Twente et al. 1985

Mpyotis lucifugus
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Hibernation and longevity

Longevity (y)

F ¢ = 13.7,P=0.0005
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40

Latitude and longevity
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Multivariate analysis of longevity
(independent contrasts)

Source (controlled™) df F P
Repro. rate (body mass) 1,56 16.9 0.0002
Hibernation (rep. rate) 1,56 14.3 0.013
Body mass (rep. rate) 1,56 54 0.025
Cave roosting (rep. rate) 2,56 5.2 0.043

*indicates the independent variable used to generate residual longevities

for the contrast analyses, r> = 0.58



Conclusions

e Bats live 3.5 times as long as other mammals of
comparable size.

 From an evolutionary perspective, extrinsic
mortality risk could account for the effects of body
size, cave roosting, reproductive rate and
hibernation on longevity

* From a physiological perspective, the effects of
reproductive rate and hibernation on longevity are
consistent with allocation of finite resources to the
soma.



Implications

e (Caloric restriction 1s the only method for
experimentally increasing lifespan in mammals

* (Calorie restricted (and hibernating!) rodents show
— Decreased blood glucose
— Decreased glycolytic enzyme activity
— Increased gamma globulin levels
— Increased antioxidant defenses

e Hibernation could act to conserve resources much
like caloric restriction



AnAge

The Animal Ageing &

Longevity Database
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Build 10 (18/04/2008): 4,122 entries

Welcome to AnAge, a curated database of ageing and life history in animals, including extensive longevity records.
AnAge was primarily developed for comparative biology studies, in particular studies of longevity and ageing, but can
also be useful for ecological and conservation studies and as a reference for zoos and field biologists.
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Comparative biology of aging

Rodents present a wide variety of life spans
and body sizes

642g/17yrs  T728g/12yrs

Naked Mole Rat
530g/24 yrs 35g/28 yrs

http://www .rochester.edu/College/BIO/labs/Gorbunova/research2.php



Rodent phylogeny

— Capybara

|—-— Guinea pig
——— N. American porcupine <~
eoonnnor. Chinchilla
Nutria
Naked mole-rat <~
American beaver <~
~ House mouse
. Norway rat
Mongolian gerbil
Deer mouse
. Golden hamster
. Muskrat
— Woodchuck
—— E. American chipmunk
. Eastern grey squirrel -

<+ Rodents with maximum lifespan greater than 20 years.



Telomerase activity and body size coevolve

Evolution of
tuMor SUppressors:

Ca.ncer -— : -— Capcer
risk Repression of Telomerase risk
Efficicnt DNA repair
Other....

J

In multicellular organisms, telomerase is required to maintain telomere length in the germline but is dispensable in the soma. Mice, for example,
express telomerase in somatic and germline tissues, while humans express telomerase almost exclusively in the germline. As a result, when
telomeres of human somatic cells reach a critical length the cells enter irreversible growth arrest called replicative senescence. Replicative
senescence is believed to be an anti-cancer mechanism that limits cell proliferation. The difference between mice and humans led to the
hypothesis that repression of telomerase in somatic cells has evolved as a tumor-suppressor adaptation in large, long-lived organisms. We tested
whether regulation of telomerase activity coevolves with lifespan and body mass using comparative analysis of 15 rodent species with highly
diverse lifespans and body masses. Here we show that telomerase activity does not coevolve with lifespan but instead coevolves with body mass:
larger rodents repress telomerase activity in somatic cells. These results suggest that large body mass presents a greater risk of cancer than long
lifespan, and large animals evolve repression of telomerase activity to mitigate that risk.
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