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Bats live longer than similar-sized mammals, but the number of lineages that

have independently evolved extreme longevity has not previously been

determined. Here we reconstruct the evolution of size-corrected longevity

on a recent molecular phylogeny and find that at least four lineages of

bats have lifespans more than fourfold those of similar-sized placental mam-

mals, with the ancestral bat projected to live 2.6 times as long. We then

evaluate a series of phylogenetic generalized least-squares models contain-

ing up to nine variables hypothesized to influence extrinsic mortality.

These analyses reveal that body mass and hibernation predict longevity.

Among hibernators, longevity is predicted by the absolute value of the

median latitude of the species range and cave use, while cave use and

lack of sexual dimorphism predict longevity among non-hibernators. The

importance of torpor in extending lifespan is further supported by the one

lineage with extreme longevity that does not hibernate but exhibits flexible

thermoregulation, the common vampire bat. We propose several potential

mechanisms that may enable bats to live so long, and suggest that the ability

to tolerate a wide range of body temperatures could be important for

surviving viral or other pathogen infections.
1. Background
The oldest mammal yet reported is a 211 year-old bowhead whale [1]. While

impressive, that lifespan is arguably not as extreme as a 31 year-old naked

mole-rat [2] because, as with many life-history traits, lifespan is allometrically

related to body mass among mammals [3]. Identifying species with extreme

lifespan requires, therefore, size correction. One approach is to divide observed

lifespan by predicted lifespan for a non-flying placental mammal of the same

body mass to obtain a longevity quotient (LQ) [4,5]. By this approach, naked

mole-rats and modern humans [6] have comparable lifespans (LQ ¼ 4.5),

which greatly exceed the whale (LQ ¼ 1.8). However, some bats are much

more extreme, such as Myotis brandtii (LQ ¼ 8) [7]. Determining whether

such extraordinary longevity has evolved more than once is important for

determining if proposed adaptations for long lifespan derived from single

species studies (e.g. [8,9]) generalize to more than one lineage.

Life-history theory [10,11] predicts that selection for long lifespan requires

low extrinsic mortality [12]. Thus, species with extreme lifespan should have

a lower risk of mortality from factors such as accidents, infectious disease or

predation, than species with short lifespan. For example, flight has been

suggested to reduce extrinsic mortality in bats [5,13], but flight has evolved

so few times that phylogenetic analysis is not possible. Moreover, all bats fly,

so flight cannot explain lifespan variation among bats.

Many factors potentially influence extrinsic mortality risk in bats. Choice of

diurnal roost environment can affect several risk factors. For example, roosting
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in caves may afford better protection from inclement weather

and predation than roosting in foliage. Similarly, roosting in

large aggregations may reduce predation risk owing to

dilution or increased vigilance. However, these potential

benefits may be offset by increased risk of pathogen and

parasite transmission. For example, larger colonies of several

bat species have been impacted more by a recent deadly

fungal disease than smaller colonies [14].

Diet could also influence mortality risk. Whether food is

stationary and predictable, such as a fruit or floral resource,

or mobile and must be hunted and captured, can influence

predator exposure and accident risk. Intestinal microbiome

composition can be influenced by diet and has been impli-

cated in lifespan [15,16]. Short or prolonged bouts of torpor

can reduce starvation risk during periods of food shortage,

although individuals with reduced body temperatures

may be less able to avoid predation. Initial studies failed to

find evidence that hibernating bats live longer than non-

hibernating bats [5,17], but recent studies have found that

hibernation reduces mortality [18] and extends lifespan in

bats and other mammals [18–20].

Bats have slow reproductive rates [21] with long prenatal

development [22], small litters and large neonates [23]. The

need to fly with offspring has been proposed to explain

why females are larger than males in many species [24,25].

In some species where females are larger than males, males

live longer than females [7]. Conversely, in some harem poly-

gynous species [26], males are larger than females but

females live longer [27], presumably because male mortality

is elevated. These observations suggest that mortality risk

may also be impacted by reproductive rate and sexual

competition.

In this study, we address two questions. First, how many

lineages of bats exhibit extreme longevity? Second, what

extrinsic or life-history factors are associated with increased

longevity in bats? This study differs from a previous study

[19] in several ways. Rather than use a concatenated supertree

for comparative analyses, here we use a recent phylogeny

based on DNA sequence data from five nuclear and four

mitochondrial genes [28]. In addition, 50% of the bat longev-

ity records are new or updated. Finally, we consider sexual

dimorphism in body size and data source in addition to

body mass, reproductive rate, hibernation, latitude, cave

use, aggregation size and diet as potential predictors of long-

evity using phylogenetic generalized least squares (PGLS)

[29] and use an information theory approach to evaluate

parameter importance.
2. Methods
To identify lineages where lifespan has increased, we recon-

structed the longevity quotient (LQ), i.e. the ratio of

observed to predicted longevity, with squared-change parsi-

mony on a molecular phylogeny of 67 bats [28] using

MESQUITE v. 3.6 [30]. We obtained longevity and body mass

records from AnAge, build 14 [31]. Given that maximum life-

span is an order statistic that is expected to increase by

diminishing amounts as sample size increases [32] we used

only acceptable quality records with medium or large sample

sizes to minimize sample size bias [33]. We predicted bat long-

evity by least-squares regression, i.e. log10(longevity) ¼

0.5609 þ log10(body mass) � 0.1868, from 804 non-flying

placental mammals.
To identify variables that explain variation in bat longevity,

we evaluated alternative multivariate models [34] that corrected

for common ancestry using PGLS, as implemented in CAPER

[29]. Because LQ correlates with both longevity and body

mass, we included log10(body mass) as a variable for poten-

tially predicting log10(longevity). We used the absolute value

of the median latitude (hereafter ‘latitude’) of the species’

range as a proxy for annual temperature and hibernation dur-

ation because in rodents hibernation duration increases

linearly with mean annual temperature [20]. We added an inter-

action between hibernation and latitude to allow for the

possibility that latitude may not affect longevity in non-hiber-

nators. Additional variables included cave use (yes/no), diet

type (animal/plant material), number of offspring produced

per year and log10(breeding aggregation size). We used sexual

dimorphism in total body length (TL), as measured by log2

(male-TL/female-TL), to determine if sexual selection on

body size contributes to variation in longevity. Trait values

were obtained from the literature, museum collections (see the

electronic supplementary material), personal observation or

personal communication. Because bat longevity records come

from either captive or wild animals, we included data source

in the models to insure it would not bias results.

We measured the relative importance of the phylogeny in

predicting each trait by calculating Pagel’s l for continuous vari-

ables and D for binary variables [35] and then fitted all possible

models using PGLS [36]. We rank-ordered models by the cor-

rected Akaike information criterion (AICc) and calculated

Akaike weights to determine model strength. We used models

within 4 AICc of the best-fitting model for model averaging

and estimated weighted coefficients, confidence intervals and

relative importance for each variable [34,37]. Because the inter-

action between hibernation and latitude had significant

influence, to interpret effects of the remaining variables we

split the data by hibernator/non-hibernator, and then repeated

the analyses described above.
3. Results
Ancestral state reconstruction of longevity quotient (LQ)

across the bat phylogeny reveals that extreme longevity, i.e.

LQ . 4.2, has evolved at least four times (figure 1). The

four lineages include horseshoe bats (genus Rhinolophus), a

vampire bat (Desmodus rotundus), long-eared bats (genus

Plecotus) and at least one Myotis lineage. Within Myotis, LQ

has increased in several species, but decreased in others

(figure 1). According to this reconstruction, the ancestral

bat lived 2.64 times longer than a similar-sized placental

mammal. Reconstruction of longevity expressed as a residual

from the body size regression (not shown) identifies the same

lineages.

Among the continuous variables hypothesized to influ-

ence longevity, all but aggregation size and progeny per

year exhibit evidence of phylogenetic inertia, i.e. l . 0 with

l ranging from 0.32 for sexual dimorphism to 0.88 for body

mass (electronic supplementary material, table S1). Similarly,

each of the three binary variables exhibits evidence of phylo-

genetic signal with D ranging from 20.16 for cave use to 21.0

for diet. Consequently, adjusting for phylogenetic covariance

is necessary to evaluate variable importance in predicting

maximum longevity.

Comparison of possible PGLS models revealed seven

models within 4 AICc of the best-fitting model (electronic

supplementary material, table S2). These models included

four to six parameters and explained 63–69% of the



Haplonycteris_fischeri
Cynopterus_branchyotis

Rousettus_lanosus
Rousettus_egyptiacus
Rousettus_leschenaulti

Pteropus_poliocephalus
Pteropus_livingstonii

Pteropus_rodricenesis
Pteropus_vampyrus
Pteropus_lylei

Pteropus_giganteus
Pteropus_pumilus

Pteropus_hypomelanus
Eidolon_helvum

Megaderma_lyra
Hipposideros_fulvus

Rhinolophus_hipposideros*
Rhinolophus_ferrumequinum*

Saccopteryx_bilineata
Noctilio_leporinus

Macrotus_waterhousii
Carollia_perspicillata

Glossophaga_soricina
Leptonycteris_curasoae

Phyllostomus_discolor
Phyllostomus_hastatus

Artibeus_jamaicensis
Desmodus_rotundus

Tadarida_teniotis
Miniopterus_schreibersi*

Plecotus_austriacus*
Plecotus_auritus*

Barbastella_barbastellus*

Corynorhinus_townsendii*
Lasiurus_cinereus

Perimyotis_subflavus*
Lasionycteris_noctivagans*

Eptesicus_fuscus*
Eptesicus_nilssoni*
Eptesicus_serotinus*

Pipistrellus_kuhlii
Pipistrellus_pipistrellus*
Pipistrellus_nathusii*

Nyctalus_leisleri*
Nyctalus_noctula*

Nycticeius_humeralis
Myotis_brandti*

Myotis_lucifugus*
Myotis_thysanodes*

Myotis_yumanensis*
Myotis_velifer*

Myotis_grisescens*
Myotis_nigricans

Myotis_vivesi
Myotis_evotis*

Myotis_keenii*
Myotis_volans*

Myotis_sodalis*

LQ

0.9–1.2

1.2–2.2

2.2–3.2

3.2–4.2

4.2–8

Myotis_leibii*
Myotis_emarginatus*

Myotis_dasycneme*
Myotis_nattereri*

Myotis_blythii*
Myotis_myotis*

Myotis_bechsteini*
Myotis_daubentoni*

Myotis_mystacinus*

Figure 1. Ancestral state reconstruction by squared-change parsimony of longevity quotient (LQ) for bats, with * indicating hibernating species. (Online version in
colour.)
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Table 1. Rank-ordered PGLS models within 4 AICc of the best model for predicting log10(longevity). Variables are M ¼ log10(body mass), L ¼ jmedian
latitudej, C ¼ cave use, D ¼ sexual dimorphism, A ¼ log10(aggregation size), P ¼ progeny per year, F ¼ diet, S ¼ data source.

subset model AICc DAICc weight R2

hibernator M þ L þ C 242.93 0 0.28 0.46

M þ L þ C þ D 242.28 0.66 0.20 0.50

L þ C þ D 240.81 2.12 0.10 0.42

M þ L þ C þ A 240.54 2.39 0.08 0.46

M þ L þ C þ P 240.32 2.62 0.08 0.45

M þ L þ C þ A þ D 239.90 3.03 0.06 0.50

L þ C þ A þ D 239.73 3.20 0.06 0.45

L þ C þ P þ D 239.57 3.37 0.05 0.45

M þ L þ C þ P þ D 239.31 3.62 0.05 0.49

M þ L 239.21 3.72 0.04 0.35

non-hibernator M þ L þ C þ D 247.00 0 0.23 0.82

M þ C þ D 245.56 1.44 0.11 0.79

M þ L þ C þ D þ P 245.22 1.78 0.09 0.83

M þ L þ C þ D þ A 245.07 1.93 0.09 0.83

M þ C þ D þ P 245.04 1.96 0.09 0.81

M þ L þ C þ D þ F 244.94 2.06 0.08 0.83

M þ L þ C þ D þ S 243.80 3.20 0.05 0.82

M þ C 243.78 3.22 0.05 0.75

M þ C þ D þ A 243.65 3.35 0.04 0.80

M þ C þ D þ S 243.54 3.46 0.04 0.80

M þ L þ C 243.51 3.49 0.04 0.77

M þ L þ C þ D þ F þ P 243.47 3.53 0.04 0.84

M þ L þ C þ D þ A þ P 243.16 3.84 0.03 0.84

M þ C þ D þ A þ P 243.09 3.91 0.03 0.81

Table 2. Model-averaged conditional coefficients+ s.e. for models in
table 1, with estimates = 0 indicated in italics.

subset variable estimate (s.e.) importance

hibernator intercept 0.739+ 0.196

mass 0.223+ 0.102 0.79

latitude 0.012+ 0.003 1.00

dimorphism 0.586+ 0.368 0.52

cave use 20.223+ 0.092 0.96

progeny/yr 20.059+ 0.086 0.17

aggregation size 0.030+ 0.086 0.20

non-hibernator intercept 0.697+ 0.093

mass 0.316+ 0.040 1.00

latitude 20.003+ 0.002 0.64

dimorphism 21.175+ 0.504 0.92

cave use 20.136+ 0.043 1.00

diet 20.046+ 0.045 0.12

progeny/yr 0.052+ 0.042 0.28

aggregation size 20.020+ 0.020 0.19

data source 20.021+ 0.050 0.09
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variation in log longevity. Model averaging revealed that

five variables had importance of 0.93 or greater, but

only three variables had coefficients that differed from

zero (electronic supplementary material, table S3). This

apparent discrepancy was caused by a non-zero coefficient

for the interaction between hibernation and latitude

despite the coefficients on each of those two variables

overlapping zero. Therefore, we split the data by hiber-

nation and fitted separate sets of models to evaluate the

relative importance of the remaining variables. These

analyses revealed 10 models for hibernators and 14

models for non-hibernators within 4 AICc of the best-fit-

ting model (table 1). The best-fitting hibernator model

explained 46% of the variation in longevity while the

best-fitting non-hibernator model explained 82%. Model

averaging revealed that hibernator longevity is deter-

mined by body mass, latitude and cave use (table 2)

with longevity increasing among species from more

extreme latitudes (figure 2a). By contrast, model averaging

revealed that non-hibernator longevity is determined by

body mass, cave use and sexual dimorphism. Species

that roost in caves have longer lifespans (figure 2b)

while species in which males are larger than females

have shorter lifespans (figure 2c). Hibernation is associ-

ated with greater longevity after controlling for each of

the other explanatory variables (figure 2).
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4. Discussion
Several prior studies have reported that bats live longer than

other mammals of similar body size [5,17–19]. However, the

number of lineages in which longevity has increased could not

be determined previously with confidence because of phylo-

genetic uncertainty. Our reconstruction of size-adjusted

longevity (i.e. LQ) on a recent molecular phylogeny [28] reveals

that extreme longevity has evolved at least four times in bats.

This reconstruction also indicates that the ancestral bat could

live 2.6 times as long as a placental mammal of similar body

size—consistent with the expectation that the evolution of

flight reduced the risk of extrinsic mortality for bats.

Species with extreme longevity also undergo hibernation

in three out of four lineages of bats. The exception to this pat-

tern is the common vampire bat, Desmodus rotundus, which

can undergo torpor between feeding bouts [38]. In addition,

female vampire bats live longer than males [39,40] and

females that have been unsuccessful at obtaining a blood

meal are more likely to receive food from a roostmate

[41,42]. The number of potential food sharing partners

likely reduces the risk of starvation [43,44], which almost cer-

tainly extends lifespan. Thus, like naked mole-rats [2,45],

extreme longevity in vampire bats appears to co-occur with

flexible thermoregulation and cooperative social behaviour.

PGLS analysis of longevity reveals similarities and differ-

ences with a previous study [19]. Both studies find that body

mass, cave use and hibernation predict bat longevity but here

latitude further predicts longevity among hibernators. From

an evolutionary perspective, this is consistent with reduced

extrinsic mortality in species that hibernate for longer dur-

ations. How lifespan is extended in hibernating species

remains to be determined. One possibility is that reduced

aerobic metabolism reduces oxidative damage. However,

support for this once popular idea is equivocal or lacking

[46,47], suggesting that other mechanisms may be involved.

Further evidence in support of mortality risk determining

longevity was found in both studies by identifying cave use

as an important predictor of longevity. In contrast to the

earlier study [19], this study failed to find evidence that

reproductive rate predicts longevity. We attribute this differ-

ence to more and better estimates of longevity along with

little variation in reproductive rate among bats.
A final difference lies in the effect of sexual dimorphism,

which was not considered before, but was an important pre-

dictor of longevity for non-hibernating species in this study.

Interestingly, longevity is reduced for species in which

males are larger than females (figure 2c). Most, if not all, of

these species are polygynous and males fight for access to a

group of females [26]. Among phyllostomid bats, males are

larger than females in harem polygynous species [48].

Given that males fight, their reduced longevity is not unex-

pected. But, why females of those species also have

reduced longevity is less obvious. Perhaps female survival

is reduced by sexual conflict (e.g. [49]) due to aggression

from dominant males or by birth of large infants.

Our phylogenetic comparative analyses identify five

factors that explain variation in bat longevity and plausibly

influence extrinsic mortality. However, the genetic and

physiological mechanisms that enable some individuals to

live longer than others remain to be elucidated. Records of

neoplasms in bats are uncommon, but bats are not immune

from cancer [50–55]. Nonetheless, no tumours have yet

been reported for any species in the extreme lifespan lineages

we identified. Thus, genetic adaptations for tumour suppres-

sion, which have been described for Myotis brandtii [8] and

Myotis myotis [9], could contribute to extreme longevity.

Moreover, recent studies have identified other possibilities,

including improved DNA repair and immunocompetence

[56], stabilization of microbiota [57], and reduced inflam-

mation and viral tolerance or resistance enabled by flexible

thermoregulation [58]. This latter idea is consistent with the

important effect of hibernation found here and elsewhere

[18,20]. Comparative genomic analyses using species

that vary in size-adjusted longevity are needed to determine

which of these potential mechanisms enable bats to

live so long.
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